What Were You Thinking? An LLM-Driven Large-Scale Study
of Refactoring Motivations in Open-Source Projects

MIKEL ROBREDO, University of Oulu, Finland
MATTEQO ESPOSITO, University of Oulu, Finland
FABIO PALOMBA, University of Salerno, Italy

RAFAEL PENALOZA, University of Milano-Bicocca, Italy
VALENTINA LENARDUZZI, University of Oulu, Finland

Context. Code refactoring improves software quality without changing external behavior. Despite its advan-
tages, its benefits are hindered by the considerable cost of time, resources, and continuous effort it demands.
Aim. Understanding why developers refactor, and which metrics capture these motivations, may support
wider and more effective use of refactoring in practice.

Method. We performed a large-scale empirical study to analyze developers’ refactoring activity, leveraging
Large Language Models (LLMs) to identify underlying motivations from version control data, comparing our
findings with previous motivations reported in the literature.

Results. LLMs matched human judgment in 80% of cases, but aligned with literature-based motivations in
only 47%. They enriched 22% of motivations with more detailed rationale, often highlighting readability, clarity,
and structural improvements. Most motivations were pragmatic, focused on simplification and maintainability.
While metrics related to developer experience and code readability ranked highest, their correlation with
motivation categories was weak.

Conclusions. We conclude that LLMs effectively capture surface-level motivations but struggle with architec-
tural reasoning. Their value lies in providing localized explanations, which, when combined with software
metrics, can form hybrid approaches. Such integration offers a promising path toward prioritizing refactoring
more systematically and balancing short-term improvements with long-term architectural goals.

CCS Concepts: « Computer systems organization — Maintainability and maintenance; « Software and its
engineering; - Computing methodologies — Artificial intelligence; « Information systems — Open
source software; Data mining;

Additional Key Words and Phrases: Software maintenance, Code refactoring, Refactoring motivations, Large
Language Models (LLMs), Empirical software engineering, Software metrics, Mining software repositories,
Developer behavior, Recommendation systems, Software quality

ACM Reference Format:

Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi. 2026. What Were
You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects. ACM
Trans. Softw. Eng. Methodol. 1, 1 (February 2026), 62 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Authors’ addresses: Mikel Robredo, University of Oulu, Oulu, Finland, mikel.robredo@oulu.fi; Matteo Esposito, University
of Oulu, Oulu, Finland, matteo.esposito@oulu.fi; Fabio Palomba, University of Salerno , Salerno, Italy, fpalomba@unisa.it;
Rafael Pefialoza, University of Milano-Bicocca, Milano, Italy, rafael.penaloza@unimib.it; Valentina Lenarduzzi, University
of Oulu, Oulu, Finland.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1049-331X/2026/2-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

HTTPS://ORCID.ORG/0009-0001-9870-1504
HTTPS://ORCID.ORG/0000-0002-8451-3668
HTTPS://ORCID.ORG/0000-0001-9337-5116
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/0000-0003-0511-5133
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0009-0001-9870-1504
https://orcid.org/0000-0002-8451-3668
https://orcid.org/0000-0001-9337-5116
https://orcid.org/
https://orcid.org/0000-0003-0511-5133
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

1 INTRODUCTION

Maintaining codebases in the era of computing pervasiveness in daily tasks, from smart appliances
to autonomous vehicles, is becoming increasingly challenging [23]. With years of development and
increasing reduction of time-to-releases, developers can make poor design choices to meet deadlines,
leading to complex and hard-to-maintain software, thus increasing subsequent maintenance effort
and costs for software firms [43]. Code refactoring is one of the most well-known techniques to
mitigate software complexity [31]. Refactoring aims to introduce code structure changes without
altering external behavior, from code optimization to architecture and design patterns [62].

Developers restructure the code to improve its design, readability, and maintainability to ensure
the long-term sustainability of software systems [38, 41, 84]. Thus, developers perceive it as a signif-
icant time and resource allocation cost due to its complexity and limitations [7, 38]. Therefore, with
limited time-to-release windows, developers often limit resources spent on refactoring, hindering
the quality and maintenance of the code [7]. However, reducing software complexity with minor
code refactoring can yield little to no improvement, leading to decreased code quality. In contrast,
bulk and more comprehensive refactorings have a more profound influence on code quality [41, 84].

In an era in which developers benefit from the natural language processing capabilities LLMs bring
when performing code refactoring [37, 63, 75, 77], current research efforts go beyond understanding
their capability on performing direct code refactoring operations [21, 48]. Exploring LLM reasoning
capabilities based on diverse variants of source code as information context [32], as well as non-
idiomatic approaches for enhancing code refactoring [97] have built the recent research path on
exploiting the reasoning capabilities of LLMs in code refactoring tasks.

Building upon this, extending the study conducted by Silva et al. [79] on the confessions of
GitHub contributors about their motivations leading them to perform refactoring operations, our
work aims at identifying the motivations leading developers to perform code refactoring
by leveraging LLMs, and similarly, compares the extracted motivations with those validated by
the software engineering literature [60, 79]. For that, we focus on mining the refactoring activity of
software projects, and providing the LLMs with the source code and version control context from
the project at the stage a refactoring operation is identified, thus investigating the LLMs’ capabilities
to identify developers’ motivations leading to performing refactoring operations. In addition, our
study examines the extent to which software metrics (SMs) reflect the refactoring motivations
(RMs) identified by the LLMs, thereby investigating whether quantitative project characteristics
can serve as indicators of developers’ willingness to perform code refactoring.

Thus, our work is based on Silva et al. [79], but also extends Pantiuchina et al. [60]. More
precisely, and comparing our work with the latter, while Pantiuchina et al. [60] analyzed pull-
requests (PRs) based on keyword lookup and the REFACTORINGMINER tool (RMT) [3] to detect
refactoring-related commits, we introduce a novel LLM-based approach capable of analyzing
all refactoring commits in the project history, thus overcoming the limitations of PR-based
analyses, for instance, incomplete change histories and rejected PRs, among others. Additionally,
while their study focused primarily on product-quality indicators (e.g., OOP complexity, static
analysis warnings, and developer-related measures), our work focuses on established product and
process metrics widely adopted in defect prediction and quality-assessment research [36, 60, 66].
Lastly, while the goal of Pantiuchina et al. [60] was to examine correlations between product
quality, developer metrics, and the likelihood of refactoring within individual PRs, we aim at
qualitatively and quantitatively investigating the underlying motivations driving developers to
perform refactoring operations, and thus define a catalogue of motivations.

To the best of our knowledge, no previous study leveraged LLMs to identify developer motiva-
tions for performing refactoring operations by exploiting their reasoning capabilities to analyze

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 3

developers’ commit messages and source code, and extract the code RMs. Our novel approach,
which departs from conventional techniques, promises to deliver the first developer-based RMs to
effectively target the correct amount of refactoring effort toward the right target. Our approach ben-
efits practitioners, translating into a cost reduction, prioritizing refactoring efforts, and researchers
paving the way for future works in developer-based software maintenance.

We designed and conducted a large empirical study analyzing 114 Java projects hosted on
GitHub.! Using RMT, we detected and analyzed 13,725,139 refactoring activities across a com-
prehensive list of 783,002 commit histories. We then used advanced LLMs to interpret the
motivations of developers expressed in version control history data, analyzing their correlations
with a robust set of established product and process metrics. This systematic approach enabled us
to quantify the effectiveness of these metrics in capturing developer motivations and contributed to
the development of a refined catalogue for developer-centric refactoring recommendation systems.
Our study contributions are as follows:

e We explore the LLM reasoning capabilities on identifying developers’ motivation leading
them to perform refactoring operations.

e We evaluate the alignment between LLM-generated refactoring motivations and motivations
reported in Silva’s work [79], using expert judgment and statistical agreement analysis.

e We categorize and quantify how LLMs enrich or extend existing motivations with more
detailed or context-aware rationale.

e We perform a large-scale LLM-assisted open-coding of the identified refactoring motivations
into 14 categories and analyze their distribution and dominant trends.

e We assess the information power and correlation of process and product SMs in explain-
ing refactoring motivations using Random Forest, Extreme Gradient Boost, and statistical
correlation tests.

e We discuss the implications for researchers and practitioners, outlining directions for LLM-
guided refactoring recommendation systems.

The application of the undergone study revealed that LLMs agreed with human judgment in
80% of the analyzed cases. However, only 47% of the RMs identified by the LLMs fully aligned
with those reported by the reference study [79]. Interestingly, in 22% of the cases, LLMs extended
known motivations with richer explanations, highlighting concerns like readability, testability, or
naming clarity that were often implicit in prior work. A majority of motivations, over 55%, centred
around improving code clarity or reducing redundancy, revealing a predominantly pragmatic
intent behind refactoring. While developer experience and readability-related metrics emerged as
important factors in machine learning models, their direct correlation with motivation categories
was statistically weak. Our study confirms the potential of LLMs to identify developer rationale
in localized refactorings, while also exposing their limitations in capturing architectural intent,
underscoring the need for hybrid systems that blend LLM reasoning with contextual project data.
To facilitate the reading of our study, we include Table E.1 (see Appendix E) with the glossary
summarizing the acronyms of the main concepts used across the manuscript.

Paper Structure. In Section 2, we present the study design, while Section 3 presents the results
and Section 4 discusses them. Section 5 focuses on threats to the validity of our study. Section 6
discusses related work, and in Section 7, we draw the conclusions.

2 STUDY DESIGN

This section outlines the empirical study, including the study goal and research questions, the
study context, the data collection methodology, and the data analysis approach. Our empirical

Ihttps://github.com

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://github.com

4 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

study follows established guidelines defined by Wohlin et al. [92]. We publish the raw data in the
replication package. Figure 1 provides a graphical description of the conducted study design.

2.1 Goal and Research Questions

The goal of this study is to artificially identify the motivations that drive developers to perform
refactoring activities by leveraging the capabilities of LLMs to interpret source code and natural
language, with the purpose of identifying the product and process metrics that can help understand
the motivations pushing developers to perform refactoring. The perspective is that of researchers
and practitioners seeking additional support to guide developers in performing the refactoring.
The context is open-source Java projects.

Therefore, we derived the following research questions (RQs):

RQ,

Can LLMs extract developers’ refactoring motivation behind a refactoring operation?

RQ;.1 What is the impact of adding different information context variants into the prompt on
the performance of LLMs for identifying refactoring motivations?

RQ; 2 How accurately can LLMs extract developers’ refactoring motivations behind a refactoring
operation?

ROQ; 5 What are the limitations in the LLMs’ performance when identifying refactoring motiva-
tions?

In recent years, the use of LLMs to automate various processes within the field of software
engineering (SE) has grown rapidly [29, 96]. SE activities such as automated code generation, bug
detection, and code refactoring have already experienced research efforts on the involvement
of LLMs within the development process [45]. Diving deeper into code refactoring operations,
research efforts have been made on understanding LLMs’ capabilities on performing direct code
refactoring [21, 48], as well as proposing hybrid approaches for refactoring non-idiomatic code [97].
Interestingly, Gao et al. [32] investigated the deductive code reasoning capability of multi-agent
LLM pipelines based on source code as information context. Building on existing research per-
formed on investigating the motivations behind performing refactoring operations [60, 79], we
aim to investigate whether LLMs can effectively extract developers’ refactoring motivations when
performing refactoring operations. Moreover, we define a multi-agent LLM decision pipeline and
ascertain its accuracy, as well as identify the limitations between the employed LLMs. Similarly, we
explore whether including different context variants into the prompt has a positive or negative
impact on the LLMs’ refactoring motivation identification capabilities.

To build upon this, an efficient approach to explore how far LLMs are from providing refactoring
motivations close to the real human perception is investigating its alignment with the state-of-the-
art [79]. Hence, we ask:

Do motivations for refactoring in past studies align with those found in software project change
histories?

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 5

Silva et al. [79] proposed a list of motivations for refactoring efforts provided by professional
developers on their authored refactoring operations, and encompassing over 12 different Refactoring
Types (RTs) (see Table 7). Pantiuchina et al. [60] built upon Silva et al’s motivations, focusing
on quality metrics and static analysis warnings, extracting information from PRs. However, PRs
represent developer interaction, but cannot represent the entire project change history [66, 94].
Moreover, PRs can be rejected; thus, it is also challenging to discern expert contributions among PRs
accepted and not [95]. Hence, we investigate developer motivation, analyzing the single commits
from the projects analyzed in the reference study [79].

Furthermore, developers’ commits, PRs, and code comments may not be able to capture all the
motivations pushing developers to refactor the codebase; hence, we ask the following:

RQ;

Are there additional motivations driving the developers’ willingness to perform refactoring?

Refactoring improves source code quality [62]; yet, quality improvements in readability, perfor-
mance, safety, and security are only part of the overall picture [59]. For instance, in an industrial
context, it is essential to assess refactoring opportunities in situations with limited resources re-
garding work allocation and time [85]. Silva et al. [79] succeeded in identifying 36 refactoring
RMs at the time they ran their study. Therefore, we investigate whether external limitations or
additional motivations influence refactoring efforts.

Finally, while our work investigates whether LLMs can identify refactoring motivations based
on refactoring contexts, there is no evidence on the extent to which these motivations are reflected
in projects’ data. Similarly, code refactoring is expected to affect software quality aspects such
as those captured through product and process metrics. If the identified motivations to perform
refactoring operations are based on developers’ perceptions of the situation of their project, we
would expect software metrics (SMs) to act as indicators of such context. Therefore, to explore
whether SMs reflect the projects’ context data upon which we identify refactoring motivations, we
ask:

To what extent can product and process metrics reflect the motivations driving the developers’
willingness to perform refactoring?

Based on Pantiuchina et al. [60], a relationship exists between specific quality metrics and
refactoring operations. However, their metric selection was limited to quality metrics and static
analysis warnings. Building upon our main focus on identifying developers’ refactoring motivations
through the use of LLMs, we are interested in exploring whether product and process metrics,
which are characterized to reflect a systems change through the development process [28, 61],
can actually reflect the motivations driving the developers’ willingness to perform refactoring.
Therefore, we extended the selection from Pantiuchina et al. [60] with established product and
process metrics [36, 65], as well as a larger body of data used in our study, given the time frame
between Pantiuchina’s work and the present study, thus broadening the candidate for a plausible
relationship to RMs. From now on, we will refer to these metrics as SMs during the study to enhance
the comprehensibility of our work.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

6 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Investingating the capabilities of]|

222 refactoring commits Clone 124 projects Phase I: Balanced sampling LLMs on motivation (——

463 refactorings Detect refactorings (RMT) Phase II: Reservoir sampling identification (RQ;) "3 H
% —
Al generated RM
vs Human RM
alignment

12 RTs IMine commits, messages and | | Phase III: Random sampling
X RMs diffs (n =385, 95% CI, £5% error)

Motivation identification (RQ2)
- CoT Prompting for RMs
- Human validation

124 OS Java (——
projects d 42 %
@ oo @ \f @ & 5
—_— —_ > - L .
g [s<—] ~ ” Novel motivation detection (RQ3)

F > Catague of new
- Compare LLM-detected vs. RMs

STUDY DATA DATA DATA
reference study RMs

CONTEXT COLLECTION SAMPLING ANALYSIS =
1 2 3 4 43
etric-motivation mapping (RQ4) Catague of most
- Open coding into RM reflective SMs on
categories RM
- Calculate feature importance
- Calculate correlations RESULTS
44 5
- -’

Fig. 1. Workflow diagram of the study design (RT: Refactoring Type)

Therefore, we hypothesize that there must already be existing SMs in the commit history of
software projects, highly correlated to the ground truth motivations and the hypothetically newly
identified ones. The formulated hypotheses are defined as follows:

e Hyc 1. There is no statistically significant correlation between the considered SMs and RMs.
e H;c ;. There is a statistically significant correlation between the considered SMs and RMs.

Consequently, considering H;¢ as the accepted hypothesis, and therefore the evidence of corre-
lation, we expand our hypotheses as follows:

e Hjc 2. The identified correlation is negative.
e H;¢ ;. The identified correlation is positive.

In this sense, this question aims at identifying the metrics that can explain the existence of the
stated motivations and further understand their specific implications. Therefore, we provide a list
of SMs that better reflect the collection of RMs identified in our study.

2.2 Study Context

In this study, we adopted as the context dataset the one published by Silva et al. [79], which consists
of a catalogue of 36 distinct motivations for 12 well-known refactoring types (RTs). In their work,
they initially selected the top 1000 Java repositories in GitHub,? ordered in terms of popularity, and
further filtered them, removing the lower quartile based on the number of commits, thus obtaining
a list of 748 repositories with consistent maintenance activities. Additionally, they filtered out
from the datasets such projects not showing development activity while conducting their study,
thus reducing the number of projects to 471. The final set of considered projects comprised 124
repositories, which featured at least one refactoring during the study period, and answers provided
by developers regarding the specific refactoring activity to the author’s questions on the refactoring
motivation. This set of projects comprised 222 commits, for which the authors provided answers
for a total of 267 RMs and 36 unique motivations. Within this set of commits, 463 refactorings
from 12 RTs were detected using the RMT [86]. Therefore, to validate the motivations provided by

Zhttps://github.com

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 7

Table 1. Summary descriptive statistics of the final set of projects considered in the study

Mean Standard deviation Median Min Max Skew Kurtosis Standard error
Age 13.67 3.99 14.13 2.86 23.81 -0.36 0.18 0.38
Size 572,311.79 1,367,904.93 174,573 4,221 10,745,685 5.73 36.26 129,835.79
Stars 7,212.38 11,908.57 3,603 351 78,022 4.24 20.23 1,120.26
Open issues 398.24 655.53 177 0 4,278 3.51 14.52 62.79
Closed issues 4,064.06 5,871 2,445 55 38,493 3.94 18.60 562.34
Overall issues 4,462.29 6,253.89 2,912 60 40,400 3.82 17.76 599.01
Commits 21,231.53 47,849.40 7,818 344 401,429 5.73 38.41 4,501.29
Developers 347.50 451.02 195 11 2,305 2.53 6.49 42.43
Languages 4.42 3.54 4 1 22 2.37 7.70 0.33
Refactoring Commits 92.35 10.91 96 47 103 -1.93 3.83 1.03
Refactoring types 6,663.39 18,650.19 2,389 77 186,854 8.28 75.98 1,754.46
Refactorings 117,424.62 522,169.20 32,437 385 5,509,181 9.89 99.42 49,121.55

developers, our study considers the final set of 124 GitHub-hosted Java projects described in the
adopted dataset.’

In Table 1, we present the descriptive statistics of the Java projects that completed all the
stages in the data collection (see Section 2.3). We can observe that the population of repositories
presents an average maturity of more than 13 years, with some projects indicating a maximum
age of more than 23 years. Regarding the popularity of the studied projects, measured in terms
of GitHub stars, we also observed a highly skewed distribution, with the most starred project
holding 78,022 stars, while the mean remained at 7,212.38 and the median at 3,603. We also revealed
extreme dispersion between projects based on characteristics such as the number of commits, which
presented an average number of almost 21,000 commits, but with some projects containing as many
as 401,000 commits. Similarly, the number of developers involved in a project varied from 11 to over
2,300, and the number of secondary programming languages used within the software repositories
ranged from 1 to 22 (Java being their main programming language), thus depicting diverse levels
of team size and project complexity. To compute the number of programming languages, we
only considered programming languages following the criteria adopted from the TIOBE index.*
According to these criteria, a programming language should have an entry in Wikipedia that
defines it as a programming language, and further, it should have at least 5,000 results for Google
search <language> programming. Furthermore, this index only considers programming languages
that are Turing complete [83]. The TIOBE index contains 358 programming languages, which we
provided in the replication package of this study (see Data Availability Statement).

Moreover, we computed the project’s size based on effective lines of code (ELOC), which resulted
in a highly skewed distribution of the projects (kurtosis = 36.26). Peak-sized projects presented
almost 11 million ELOC, while the average size resulted in over 570,000 ELOC, which already
denoted an average noticeable size of the considered projects. To compute ELOC, we quantified
the total number by only considering the programming languages included in the TIOBE index.
Altogether, we consider the study context for this study to be representative of an extended variety
of Java projects in terms of the presented software attributes.

Shttp://aserg-ufmg.github.io/why-we-refactor
4https://www.tiobe.com/tiobe-index/programminglanguages_definition/#instances

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://www.tiobe.com/tiobe-index/programminglanguages_definition/#instances

8 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

95% CI Mine VCH & Mined Change
) sampling SMs History
1 > »
N L
e
114 385 sampled
Mining projects refactorings
Refactoring 3 4 5
12408 Feeding projects Activity Mined SMs
projects into Refactoring " "
Miner
SELLEG)
—
Silva et al. . .
dataset RefactoringMiner ~ \ oo
1 2

6 projects went into 4 projects exceeded
endless hung process available computing .
capabilities

10 projects

Fig. 2. Data collection process diagram (VCH: Version Control History, SM: Software Metrics).

2.3 Data Collection

This section outlines our multi-stage data collection process, depicted in Figure 2, and designed
to support our RQs. The process includes: (i) mining refactoring data, (ii) creating a statistically
significant sample for the analysis, (iii) mining project change history, and (iv) computing SMs
listed in Table 4. To aid the narrative of our study design, we have included further details on the
data collection process in Appendix A.

2.3.1 Collecting Refactoring Data. To ground our study in real-world developer activity, we mined
the refactoring data from 124 GitHub projects, replicating and extending the dataset from the
reference study [79]. Since their publication, these projects experienced an average increase of
over 10,600 commits; e.g., JetBrains/intellij-community increased by 273,044 commits. We provide
a table presenting the differences between the number of commits in the studied projects when
the reference study was published and for the present study in the replication package (see Data
Availability Statement).

We adopted the REFACTORINGMINER tool (RMT) [3] to mine the refactoring activity from the
entire version-control history of the cloned repositories. Table 2 shows the categorization of the
103 refactorings of our study according to their types as defined by Fowler [31].

Due to resource limitations and persistent errors with RMT, we excluded 10 projects from the
study. However, since we could still collect the SMs from affected refactoring commits, we included
the affected commits and their ground-truth RMs. We acknowledge the impact of this decision as a
threat to validity in Section 5. We extend the description of the data collection process and issues
in Appendix A.1.

In total, we mined 114 projects, detecting 13,725,139 refactorings across 783,002 commits. Com-
mits without refactorings were discarded. Abbreviations for refactoring types (RTs) used throughout
the article are listed in Appendix Table C.1. Refactoring category frequencies are shown in Table 3.
To expand the work conducted by Pantiuchina et al. [60], we also investigated the extent to which

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 9

Table 2. Refactorings Types detectable by REFACTORINGMINER 3.0 and newer versions [3].

RT Category Description Detectable Refactoring Type (RT)
Reorganize how methods are Extract / Ipllne / 'Merge / Split Metho('L
composed. such as streamlin- Extract / Inline / Split / Merge / Rename Vari-

Composing Methods P ’ able, Change Variable Type, Move Code (be-

ing their logic or removing un-
needed parts.

tween methods), Merge Catch / Conditional,
Split Conditional.

Moving Features between

Classes

Re-organize the distribution of
functionalities and data among
classes.

Extract / Move / Rename Class, Move
Method, Move Attribute, Localize / Re-
order Parameter, Replace Attribute / At-
tribute with Variable.

Manage Class Modifiers

Re-assign the modifiers from
different parts of the code.

Change Attribute Access / Class Access Mod-
ifier, Change Type Declaration Kind, Add
Method / Attribute / Variable / Parame-
ter / Class Modifier, Remove Method / At-
tribute / Variable / Parameter / Class Modi-
fier.

Organizing Data

Re-organize the way data is
managed inside a class.

Extract/ Split / Merge / Replace / Rename / In-
line / Encapsulate / Parameterize Attribute,
Change Attribute Type, Replace Variable
With Attribute.

Simplifying Method Calls

Simplify class interactions by
making the methods easier to
call and understand.

Split / Merge / Add / Remove / Reorder / Re-
name Parameter, Parameterize Variable,
Change Parameter Type, Change Method Ac-
cess Modifier, Change Return Type, Rename
Method.

Dealing with Generalization

Moving functionalities along
class inheritance hierarchy.

Extract Superclass, Extract Subclass, Ex-
tract Interface, Pull Up / Push Down At-
tribute, Pull Up / Push Down Method,
Split / Merge Class.

Syntax/Command
ment

Replace-

Replace source code objects
with alternatives.

Replace Loop With Pipeline / Anonymous
With Lambda / Pipeline With Loop / Anony-
mous With Class / Generic With Diamond /
Conditional With Ternary.

Package Management

Re-organize how packages are
composed.

Rename / Move / Split / Merge Package.

Test Specific Handle test specific scenarios. | Parameterize Test, Assert Throws / Timeout
Move And Rename Attribute, Move And In-
line Method, Move And Rename Class, Move
And Rename Method, Extract And Move

Other composite refactorings | Method, Add / Modify / Remove (Class / At-

Others are detected by REFACTORING- | tribute / Method / Parameter / Variable) An-

MINER.

notation, Add / Change / Remove Thrown Ex-
ception Type, Change Package, Move Source
Folder, Try With Resources, Invert Condi-
tion, Collapse Hierarchy.

(Bold RTs: Refers to the RTs investigated in the reference study (12 out of 103 RTs).)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

10 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Table 3. Mined frequencies for each RT detected by REFACTORINGMINER (#: Instances).

RT # | RT # | RT # | RT # | RT # | RT #
RM 1,997,099 | MM 198,667 | RC 76,450 | RAA 35,118 | TWR 8,283 | SM 1,957
MMA 1,663,555 | RCA 196,080 | AAA 76,300 | EC 34,097 | EI 8,123 | MerC 1,682
CVT 694,433 | APA 182,867 | ATET 73,858 | IC 32,880 | CTDK 8,117 | MCat 1,677
AMA 649,691 | RTET 181,235 | RPM 69,931 | CTET 28,877 | AVA 7,783 | CH 1,441
CPT 605,118 | RA 171,885 | CCAM 62,162 | RAWV 28,764 | RParam 7,739 | RPWL 1,427
AP 504,837 | IV 165,687 | RAM 60,016 | RCM 27,218 | RAWC 5,173 | SClass 1,016
CRT 438,291 | ACA 144,488 | IM 59,572 | LP 22,840 | MA 4,932 | MerM 945
EV 360,499 | CAAM 143,428 | PV 55,221 | MCode 22,184 | AT 4,766 | SP 877
MCA 342,591 | AVM 133,253 | RMM 55,131 | EA 21,651 | IA 4,752 | MPack 705
CMAM 330,173 | AAM 125,500 | ACM 49,746 | MCon 21,021 | SP 4372 | SV 688
EM 324,173 | RAWL 123,551 | EnA 47,433 | SC 18,579 | ESub 4,187 | RA 615
RenP 297,012 | RVM 117,181 | MARM 46,839 | MSF 18,562 | MARA 4,124 | MVA 305
RV 292,827 | RGWD 109,725 | RVWA 46,643 | Sup 16,199 | MP 3,828 | PT 73
CAT 282,403 | PUM 102,417 | RPA 43,379 | PDA 15,160 | RVA 3,745 | - -
MARM 281,148 | APM 99,209 | PUA 42,097 | PA 11,683 | MV 3,418 | - -
RP 261,442 | MA 97,947 | PDM 39,711 | RCWT 10,976 | RLWP 3,326 | - -
MovC 251,219 | EAMM 88,375 | MAIM 38,629 | MParam 10,815 | RPack 3,088 | - -
RMA 212,805 | AMM 82,472 | MAA 36,976 | MPA 9,352 | SA 2,622 | - -

refactorings occurred within pull requests (PRs) by mining the PR endpoint of their GitHub reposi-
tory. Thus, among the collection of commits with detected refactoring activity, 25% were associated
with PRs, while the remaining 75% represented commits performed outside PRs. Therefore, we
expand the mined body of knowledge by over three times the prior research.

2.3.2 Selecting a Statistically Significant Sample for the Analysis. Analyzing more than 13 million
refactorings was computationally infeasible due to the cost of SM extraction (e.g., ADEV, MINOR)
(see Section 2.3.4) and prompt-based LLM analysis (see Section 2.4).

To ensure tractability and rigor, we selected a sample of 385 observations, yielding a 95% confi-
dence level and 5% margin of error in the obtained results [10, 73]. For that, we followed a similar
sampling approach to that of already implemented sampling techniques within the field of Software
Engineering [44] (see Figure 3). We applied a greedy sampling strategy over three phases:

e Phase 1: Ensure each project and RT had a minimum of 3 sampled refactorings.
o Phase 2: Use reservoir sampling [88] to fill gaps in underrepresented projects.
e Phase 3: Apply random sampling to complete the remaining unfilled entries.

Our rationale for performing this sample strategy stands on prior work performed by Saarimaki
et al. [70]. Among the major issues identified in their work within empirical SE research, they
claimed the issue of representativeness of studied software projects when large projects dominate
small ones. Our collected data consists of 114 software projects, in which software repositories
such as jetbrains/intellij-community (almost half a million commits) and apache/zookeeper (2,700
commiits) are similarly mined and included in our dataset. To remediate the highlighted issue in our

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 11

3 refactorings per

13,725,139 3 refactorings per refactoring type & Sampling pending
refactorings refactoring type project 43 refactoring refactormgs
Mined Sampling Sampling Phase I1 Sampling Phase 111 Target
dataset Phase I (Reservoir (Pure random sample
1 2 3 sampling) 4 sampling) 5

Fig. 3. Diagram of the adopted sampling strategy.

study, our sampling strategy aims at representing at least a minimal equal amount of refactoring
types to research to analyze, and therefore represent, all the refactoring types mineable by RMT.

Since our dataset contains refactorings both inside and outside PRs, we verified that the drawn
sample preserved a similar distribution. Following the same mining effort as in the data collection,
we identified 34% of the sampled refactorings to be inside PRs, closely located to the 25% observed
in the full dataset. This confirms that the sampling strategy does not introduce bias with respect to
PR vs. non-PR activity and that the sample reliably allows us to generalize our results to the entire
body of mined data. Nevertheless, we discuss the implications as threats to validity and potential
further work on this within Section 5.

We expand on the description of the performed sampling strategy in Appendix A.2.

2.3.3 Mining the Change History. For each sampled commit, we used the PyDriller’ Python library
to extract the commit message and the corresponding file-level code diff where the refactoring
was applied. PyDriller also supports basic structural analysis using Lizard,’, enabling us to capture
class- and method-level metrics across languages (e.g., Java, Python, C), thereby supporting the
calculation of software metrics based on version control data.

2.3.4 Computing the SMs (Software Metrics). To answer RQs, we computed both product and
process metrics [36, 65] (see Table 4) leveraging different tools. We used:

e PyDriller for SMs requiring the cumulative inspection of the version-control history between
commits.

e CK [6] for product metrics [60] (e.g., WMC, RFC), invoked via CLI over target Java files.

e CoRed,” a Python wrapper of the official implementation of the metric described by Scal-
abrino et al. [74] to compute ComRead, which provides a comprehensive readability score.

Table 4 presents and describes all the metrics considered in this study.

2.4 Data Analysis

This section describes the data analysis techniques and methods used for answering our RQs,
including our investigation of the capabilities of LLMs to extract developers’ refactoring motiva-
tions (RQ), the identification of RMs for each of the sampled refactoring observations (RQ3), the
alignment and identification of additional RMs compared to the reference study (RQs), as well as
the evaluation of the extent SMs reflect RMs within the software system (RQ4). Figure 4 presents
the workflow diagram of the data analysis.

Shttps://pydriller.readthedocs.io/en/latest/

®https://github.com/terryyin/lizard
Thttps://github.com/grosa1/CoRed/tree/master

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://pydriller.readthedocs.io/en/latest/
https://github.com/terryyin/lizard
https://github.com/grosa1/CoRed/tree/master

12 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Table 4. Product and process metrics adopted as our software metrics (SMs).

‘ Metric ‘ Type ‘ Description

ADD Process The normalized number of lines added to a given file in the considered commit.

ADEV Process The cumulative number of active developers who modified a given file up to the considered commit.

COMM Process | The cumulative number of commits in a given file up to the considered commit.

DELE Process The normalized number of lines removed from a given file in the considered commit.
5 DDEV Process The cumulative number of distinct developers contributed to a given file up to the considered commit.
E EXP Product | The mean of the experience of all developers across the project.
§ MINOR Product | The number of contributors who contributed less than 5% of a given file up to the considered commit.
é NADEV Process The number of active developers who changed any of the files involved in the commits where the given file has been
g modified.
é NCOMM Process | The number of commits where the given file has been involved.
g NDDEV Process The number of distinct developers who changed any of the files involved in the commits where the given file has been
~ modified.

NSCTR Process The number of different packages touched by the developer in commits where the file has been modified.

OEXP Product | The percentage of code lines authored by a given developer in the project.

OWN Product | Measures the percentage of the lines authored by the highest contributor of a file.

SCTR Process The number of packages modified by the committer in the considered commit.

AGE Process | The average period between the last and the current change.

CEXP Process The number of commits performed on the given file by the committer up to the considered commit.

ENTROPY | Product | The distribution of the modified code across each given file in the considered commit.

FIX Process | Whether or not the change is a defect fix.
LA Product | Ten lines added to the given file in the considered commit (absolute number of the ADD metric).
g LD Product | The number of lines removed from the given file in the considered commit (absolute number of the DEL metric).
'?j LT Product | The number of lines of code in the given file in the considered commit before the change.
»; ND Process | The number of directories involved in a commit.
Eﬂ NDEV Process The number of developers that changed the modified files.
NF Process Number of modified files.
NS Process Number of modified subsystems (packages).
NUC Process | The number of times the file has been modified up to considered commit.
REXP Process The number of commits performed on the given file by the committer in the last month.
SEXP Process | The number of commits a given developer performs in the considered package containing the given file.
CBO Product | Coupling Between Object classes: measures the dependencies a class has.
ComRead Product | Comprehensive readability model combining structural, visual, and textual features.
DIT Product | Depth of Inheritance Tree.
ELOC Product | Effective Lines Of Code: code excluding blanks and comments.
HsLCOM Product | Henderson-Sellers LCOM: cohesion metric.
NOC Product Number Of Children (direct subclasses).
_ | NoF Product | Number Of Fields declared in a class.
g NOM Product | Number Of Methods in a class.
'é NOPF Product Number Of Public Fields declared in a class.
;‘; NOPM Product | Number Of Public Methods in a class.
§ NOSF Product | Number Of Static Fields declared in a class.
g NOSI Product | Number Of Static Invocations of a class.
= NOSM Product | Number Of Static Methods in a class.
RFC Product | Response For a Class: number of local and remote methods reachable.
WMC Product | Weighted Methods per Class: sums the cyclomatic complexity of the methods in a class.

24.1 LLM Roles, Human Validation and Prompting Strategy. Since the general availability of LLMs,
our research community has investigated their use in SE tasks, benefiting both practitioners and
researchers [24]. Among such tasks, classification and rating are the most time-consuming and
error-prone tasks that humans perform during research activities [26, 27]. Therefore, since we
performed LLM prompting in different stages of the data analysis to answer our RQs, we evaluated

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects

Table 5. Overview of Selected LLMs

13

Model

Parameters & Quanti-
zation

Details

Highlights

Stochastic Control

Marco-o1 (LRM)*

7.6B, not quantized

Inspired by OpenAlI’s o-
1

Fine-tuned on CoT datasets, uses
MCTS + softmax scoring, excels at

All models were executed using the
same low-stochasticity decoding

configuration: temperature = 0.1,
top_p = 0.9, top_k = -1,
repetition_penalty = 1.0,
max_new_tokens = 4096. Under
vLLM, a fixed seed was enforced
for reproducibility, together with
identical sampling parameters
across all models.

math, coding, and logic tasks

128K token context, strong
instruction-following, competitive
performance vs similar-size open
models

Mistral-Nemo-Instruct-
2407

12.2B, not quantized Alignment-tuned ver-
sion of Mistral-Nemo-

Base-2407

Phi-4 (Microsoft)® 14B, not quantized Next-generation Phi se-

ries model
Distilled from

DeepSeek-R1 using
Qwen 14B architecture

Strong reasoning, math, and coding;
optimized for efficiency and safety
DeepSeek-R1-Distill-
Qwen-14B4

14B, not quantized Strong reasoning performance; com-
petitive with much larger models; ef-

ficient inference

https://huggingface.co/AIDC-Al/Marco-o01

b https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407

¢ https://huggingface.co/microsoft/phi-4

4 https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B

the proficiency, accuracy, and agreement of four LLMs assigned to extract the motivation behind
refactoring operations. The following paragraphs describe the roles of the LLMs adopted in the
data analysis design, the human validation employed in each of the response collections obtained
from the LLMs, as well as the prompting strategy adopted to guide them in performing the task
classifications. Table 5 presents the overview of the implemented setting for the experiments
executed with selected LLMs, including characteristics such as model temperature or stochasticity
level, among others.

LLM Roles. We employed four distilled LLMs for classification and validation tasks:

e Large Reasoning Model (LRM): Marco-o1 acted as the primary assistant for identifying
RMs. Its output formed the basis for further validation and was referred to as the LRM
response throughout the study.

o First Validation Model (V1): Mistral NeMo was assigned as the first validation assistant.
It received the same input as the LRM and was additionally asked to evaluate the LRM’s
reasoning and output. Its role was to independently assess the correctness of the LRM’s
decision.

e Second Validation Model (V2): DeepSeek R1 acted as the second validation assistant,
mirroring the role of V1. It provided a parallel evaluation of the LRM’s output to detect
agreement or disagreement with V1’s assessment.

o Third Validation Model (V3): Microsoft Phi-4 was designated as the final arbiter in cases
where V1 and V2 disagreed. In addition to the standard input, it received the assessments from
both V1 and V2, as well as the original LRM output, to deliver a final decision in conflicting
cases.

Each selected model was assigned a specific role based on its function in the data analysis pipeline
(see Figure 4). We provide further technical details on the adopted LLMs, as well as model configu-
ration in Appendix B.1.

Human Validation. Since no previous study reported findings on the accuracy of LLMs for the
task at hand, we designed a validation strategy involving three human experts replicating the LLM
validators’ roles. Collectively, the experts tasked to perform the human validation bring more than
two decades of hands-on industrial experience with mission-critical software systems, extensive

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://huggingface.co/AIDC-AI/Marco-o1
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/microsoft/phi-4
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B

14 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

RN[.S identified P'Y
with LLMs '.‘ ‘ ‘
t\ - o a
v) Human Human FI and CA between~ Catalogue of most
Human RMs I% validation validation SMs and RMCs informative RMs
1
RQ, RQ, \4 RQ; RQ, VY
Identifyin .
Sampled refactozing . Assessu.lg Identifying LLM assisted
data motivations (RMs) alignment with RW g)ignment with commit Open Coding
messages RMCs

A

aza il

Human Assessing
validation additional RMs

Fig. 4. Data analysis process diagram.

academic specialization in technical debt and refactoring, and long-standing research contributions
in software maintenance and code quality assessment. The goal was to assess the quality of the
model-generated motivations and identify which models consistently produced reasonable outputs.
Our validation followed a three-step protocol:

e One expert independently reviewed the same input provided to the LRM and the three valida-
tion models (V1-V3), and manually evaluated the correctness of each model’s motivation. For
each case, and after making a manual decision over the refactoring case, the expert indicated
whether they agreed or disagreed with the LRM’s motivation, noted the majority decision
among the validation models, and identified the models they considered correct.

e A second expert repeated the same evaluation independently and documented their level of
agreement with the first expert’s judgments.

e In cases of disagreement between the first two reviewers, a third expert was brought in to
assess the same outputs independently. Final decisions were made through majority voting
among the three validators.

Since LLM outputs are non-deterministic, and to assess the reliability of the results, we performed
this validation strategy in each of the data analysis stages, which involved LLM outputs (see Figure 4).

Prompting Strategy. To guide LLMs in classifying RMs, we adopted chat-based in-context
learning, which has been shown to perform comparably to fine-tuning [25]. Each prompt consisted
of two components: a system message defining the model’s role and expected output, and a user
message providing the input context.

We employed prompt engineering techniques to guide LLMs in classifying RMs. According to
the state-of-the-art, in-context learning through chat-based prompting provides similar or better
results than the more computationally expensive fine-tuning process [25]. During the in-context
learning phase, the system message established the assistant’s role and specified the expected
output format, and the user message provided the contextual input.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 15

The user message included details a human developer would typically see: the RT, a description
obtained from RMT (REFACTORINGMINER), the commit message, and the relevant code diff.
Information on refactoring activity and local changes collected from the version-control history of
a project provides the LLMs with localized context on the performed refactorings. However, this
might lack more holistic details, such as long-term project goals or further architectural design
information. We acknowledge this gap, and acknowledge it as a threat to validity in Section 5.

To improve the attention and consistency of the LLM, we adopted the Chain of Thought (CoT)
prompting [90], employing zero-shot learning [39, 64]. We systematically refined the employed
message prompts during the prompt engineering stage for each of the defined RQs and made
the system and user message prompts accessible in our replication package (see Data Availability
Statement). Similarly, we expand how we used the CoT prompting strategy, as well as the employed
JSON prompt format in Appendix B.2.

We allowed the LLMs the freedom to suggest multiple motivations if they existed by not specifying
the number of motivations in the user message. Nevertheless, when the LLM output contained
more than one plausible rationale, the human validators examined the proposed alternatives and
confirmed whether they represented meaningful additional motivations or simple paraphrases.
In cases where multiple distinct motivations could reasonably apply, the validators selected
the primary one by examining the specific refactoring type, the code context, and the
developer intent inferred from the surrounding changes. Therefore, our pipeline ensured
that the possibility of multi-motivation refactorings was explicitly considered, even though the
final labeling reported one motivation per instance for analytical consistency and comparability.
While focusing on the primary motivation facilitates quantitative analysis and alignment with prior
literature, we acknowledge this choice to underrepresent secondary or less explicit motivations,
and therefore, we further discuss it as a threat to validity (see Section 5).

2.4.2 On the capability of LLMs to extract developers’ RM (RQ;). To answer RQq, we feed the
LLMs with each of the 385 sampled refactoring observations (see Section 2.3), including the RT,
RMT-generated description, commit message, and code diff from the respective commit as the
context variants to provide information within the prompt. Consequently, given the obtained
answers from the LLMs, we investigate their capabilities to extract developers’ RMs based on the
following series of evaluations.

Evaluating the impact of adding different context variants within the prompt on the
performance of LLMs for identifying RMs (RQ; 1). Before the analysis of RQ;, we performed a
prompt engineering process to define the prompt that provided the most reasonable RM results
from all the adopted LLMs (see Appendix B). Thereby, we set the same prompt structure to feed the
LLMs, and within we provide the RT and description captured by the RMT, the commit message,
and the commit diff, which are the baseline refactoring context variants (see Table 6). This choice is
a best effort, considering the available natural language text information in the repository at the
stage of the performed refactoring operation. With the prompt structure fixed, different context
variant combinations within the prompt can prove the significance of the variants that better
improve the accuracy of the LLMs.

For this, we conduct an ablation experiment, a method used to perform sensitivity analysis
and thus evaluate the contribution of each of the components within a system by systematically
removing it from the model and then quantifying the impact on the performance of the latter [47].
Thus, we replicate the fixed prompt structure with different ablations of the same user message
to the LLMs (see Table 6). Precisely, we feed the employed 4 LLMs with the defined 15 different
prompt context variant combinations, summing to a total of 60 replications.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

16 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Table 6. Ablation experiment variants for context combinations. (Ablation 15: Baseline prompt with the
initially considered context variants.)

Ablation Context variant ‘ Ablation Context variant
1 Refactoring type 9 Refactoring description, Commit message
2 Refactoring description 10 Commit diff, Commit message
3 Commit diff 11 Refactoring type, Refactoring description, Commit diff
4 Commit message 12 Refactoring type, Refactoring description, Commit message
5 Refactoring type, Refactoring description 13 Refactoring type, Commit diff, Commit message
6 Refactoring type, Commit diff 14 Refactoring description, Commit diff, Commit message
7 Refactoring type, Commit message 15 Refactoring type, Refactoring description, Commit diff, Commit message
8 Refactoring description, Commit diff

On the one hand, the LRM solely provides, as an output, a natural text reasoning on the identified
RM. On the other hand, the validating LLMs provide their agreement with the LRM reasoning, as a
binary output, and a natural description of their assessment. The human validators perform the
same LLM activity, i.e., extracting the RM from the developer commit, thus creating the human-
curated ground truth (GT). Based on the GT, the human experts reviewed the four LLMs’ reasoning
and agreement (see Section 2.4.1).

The human expert assessment aims at evaluating the model’s accuracy as measured by the
usual IR accuracy metrics [28]. It is important to note that since all our experiments are based on
only refactoring commits, a motivation, either correct or wrong, will always exist. Therefore, per
construction, it is not possible to obtain negatives, i.e., nor the refactoring could lack a motivation
for refactoring (true negative) nor the model can assume no motivation for a refactoring (false
positive), per construction. Therefore, the only possible outcome to produce the confusion matrix is
True Positives and False Negatives. Thereby, accuracy metrics that rely on false positives and true
negatives cannot be computed. Hence, we consider as accuracy metrics commonly used Recall, F1
Score and False Negative Rate (FNR) [28].

Based on the defined ablation experiments and the computed accuracy metrics, we define the
following hypotheses to test the impact of the performed sensitivity analysis:

e Hy1: There is no statistically significant difference in the accuracy of the employed LLMs across
the employed different context variant combinations.

e H, i: There is a statistically significant difference in the accuracy of the employed LLMs across
the employed different context variant combinations.

Consequently, if there was statistically significant evidence on the defined hypotheses, we are
interested in testing the pairwise relationship among the different combinations of ablations across
different LLMs. Therefore, we derive the following hypotheses:

o Hy,: There is no statistically significant difference in accuracy between prompt variant combi-
nation A and prompt variant combination B.

e Hi,: There is a statistically significant difference in accuracy between prompt variant combina-
tion A and prompt variant combination B.

To perform the statistical inference on the drawn hypotheses, we first examine whether the
accuracy scores computed for all the ablation experiments across LLMs follow a normal distribution,
and thus decide whether using parametric or non-parametric tests [27]. Therefore, we draw the
following hypotheses:

o Hyn.1: The distribution of the accuracy scores across different ablation experiments is normally
distributed.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 17

o Hip.1: The distribution of the accuracy scores across different ablation experiments is not normally
distributed.

We test Hyn 1 using Anderson-Darling (AD) test [5]. AD tests whether data points are sampled
from a specific probability distribution, in this case, a normal distribution. According to Mishra et
al., [49], the Shapiro-Wilk (SW) test [76] would be more appropriate when using smaller datasets
with fewer than 50 samples. However, our dataset is large enough to use AD, the more powerful
statistical test for detecting most departures from normality [82].

If there is statistically significant evidence on the normal distribution of the data, we test H; with
the parametric repeated-measures ANOVA test [14]. In the opposite scenario, we would perform
hypothesis testing with the non-parametric Wilcoxon signed-rank test (WT) [91]. Similarly, if
H; demonstrates significant differences in accuracy scores across ablation experiments, we test
H, with parametric multiple paired t-tests if the data were normally distributed, or with the
non-parametric Dunn’s all-pairs test [22] (DT). The DT test is a post hoc test that compares the
differences between all groups within a dataset. Following recent research, we select the critical
value of (@ = 0.05) to assess the significance of the inference results [71].

Evaluating the accuracy of LLMs on extracting developers’ RMs (RQ; ;). With the ablation
experiment, we identify the best performing context variant combination. Subsequently, to assess
the LLM’s capability to identify developers’ RM, we must employ this prompt combination to
evaluate their performance. Therefore, we employ the same performance assessment strategy
defined for the ablation experiment in the previous RQ, this time implemented with the best-
performing prompt. Similarly, we compute the accuracy of the models with Recall, F1 Score, and
False Negative Rate (FNR) as previously reported.

On the limitations in LLMs performance when identifying RMs (RQ, 3). To answer RQ; 3,
we qualitatively and quantitatively analyze the LLMs’ erroneous outputs across all the sampled
observations when they deviated from the GT (human-validated ground truth). We focus on
characterizing the nature of the mistakes made by the LLMs and understanding the conditions in
which the LLMs failed. For that, we analyze three main dimensions:

e Disagreement Severity: We quantify the extent to which LLMs disagreed with the GT based
on the total number of models that did not match the RM reported in the GT. Thus, we
detect whether a model tends to identify the dimension of the disagreement across the entire
analyzed sample of refactoring observations.

e Information Density: For each refactoring observation, we compute the information density
score based on the log-transformed total number of words included across all the prompt
refactoring context variables text data [52]. This enables us to determine whether certain
LLMs are more sensitive to sparse or highly condensed information, and whether LLMs’
limitations are associated with a lack of contextual misalignment.

e Error Category: The authors perform open-coding on the errors performed by the LLMs that
did not align with the GT. Thus, we categorize the main reasons or error types reflecting
common LLM failure modes.

2.4.3 Alignment and Extension of RMs with the Reference Work (RQ;-RQ3). To build upon RQ;, we
now investigate the level of alignment of the RMs identified with the LLMs with respect to the
ground-truth motivations identified by Silva et al. [79].

This comparison involved checking for logical consistency, identifying discrepancies, and deter-
mining whether the identified RMs extended or complemented the ground truth. It is important
to note that while our validated dataset included all RTs mineable by the latest RMT version, the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

18 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

ground truth only covered those listed in Table 7, which presents the frequencies analyzed and orig-
inated by the work performed by Silva et al. [79]. Table C.1 provides the names and abbreviations
of such RTs.

Therefore, the validation process was limited to RTs analyzed in Silva et al. [79]. Consequently,
we pair the sampled RTs and their identified RMs with the ground truth RM counterparts, resulting
in a total of 758 RM comparison pairs. From this set, we perform human validation on a statistically
significant sample of 198 pairs, with a 95% confidence level and 5% margin of error [73] (see
Section 2.4.1).

While the goal of RQ; consists of the alignment between the ground-truth RMs and those now
identified, we need to validate such results through manual validation, and further assess the
reliability of the performed validation. Therefore, and to assess the reliability of the validation, we
measure the inter-rater agreement (IRA) between the two raters (human and LLM) using Cohen’s
Kappa (k) [17], which is well-suited for two-rater scenarios. Unlike Fleiss’ Kappa [30], which is
designed for multiple raters, Cohen’s k allows us to measure the agreement between a single LLM
and a human validator. We interpret the results using Landis and Koch’s guidelines [42], where k
values range from less than 0 (no agreement) to 0.81-1 (almost perfect agreement).

Moreover, we conjecture the following hypotheses on the symmetry of the agreement:

e Hys: The disagreement between raters is evenly distributed.
e His: The disagreement between raters is not evenly distributed.

To test such hypotheses, we use Bowker’s test of internal symmetry [11], a non-parametric
statistical test designed to evaluate whether the distribution of disagreements between two raters
is symmetric across a square contingency table. In other words, it checks whether the frequency
of disagreements in one direction (e.g., human says A, LLM says B) is statistically different from
the reverse (LLM says A, human says B). This is particularly useful when dealing with categorical
data involving more than two outcome categories, as is the case in our RM classification. Bowker’s
test extends the well-known McNemar test [46], which is limited to 2x2 tables, by allowing for
multi-class comparisons. We select Bowker’s test specifically due to the higher dimensionality of
our data, which includes multiple motivation types, making it a more suitable and robust choice
for assessing symmetry in rater disagreement.

Finally, we are keen to investigate whether LLMs can expand the state-of-the-art by providing
new motivations for previously identified ones in the reference study [79] (RQs3). In this context,
we prompt the LLMs with the identified RM, the ground truth RM and developer explanation, as
well as the involved commit message, and task them to classify identified RMs as either related
or not related to the ground truth motivations, and if related, if they expanded the motivation.

2.4.4 Software Metrics reflecting Refactoring Motivation (RQy). This section investigates the degree
to which the considered software metrics (SMs) can reflect developers’ refactoring motivations
(RM). Consequently, we measured the feature importance (FI) and the correlation between SMs
(software metrics) and RMs. To such end, and since RMs are notorious for being a human-free
text explanation of the aims and insights that lead developers to perform refactoring, we need a
categorical, encodable variable. Thus, and in contrast to traditional qualitative analysis, our study
employs LLM-assisted open-coding to derive a taxonomy of refactoring motivation categories
(RMCs), with posterior human validation.

Therefore, in this RQ, we (1) perform open-coding and define RMCs, and, for the latter, calculate
(2) FI and (3) correlation level for the calculated SMs.

Open-Coding. We derive a taxonomy of RMCs from 385 identified RMs. We prompt the LLMs
to perform open-coding iteratively, proposing and validating categories derived from the RMs

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 19

Table 7. Definitions of the considered refactoring types [31] with unique ground truth motivations (#) [79].

Type ‘ # ‘ Definition

EM 11 | Takes a clump of code and turns it into its method.

MovC | 9 Move the class to its new folder on the source tree.

MA 2 All attributes matching the selected attribute name on tags with the selected tag name may be moved
inward toward a subtag of a given name.

RPack | 3 Renames the name of the selected project package.

MM 5 Creates a new method with a similar body in the class that it uses the most. Either turn the old method

into a simple delegation or remove it altogether.

M 3 Puts the method’s body into the body of its callers and removes the method.

PUM 1 Moves methods with identical results on subclasses to the superclass.

PUA 1 Moves attributes with identical results on subclasses into the superclass.

ESup 3 Creates a superclass and moves the common features to the superclass.

PDM 1 Given a field only used by some subclasses, it moves the field to those subclasses.

PDA 2 Given an attribute only used by some subclasses, it moves the attribute to those subclasses.

EI 3 Given two classes having part of their interfaces in common, it extracts the subset into an interface.

with the option to introduce new categories, thus simulating the common human practice when
performing open-coding. Human validation was performed over a statistically significant sample
(95% confidence level, 5% margin of error) afterwards. We provide more details on the conducted
open-coding in Appendix B.3.

Feature Importance (FI). To evaluate each the influence of SM (see Table 4) on RMCs, we rank
them by their feature importance (FI) [72], a standard feature selection technique used in prior
studies to measure the importance of a variable to describe the behaviour of the predicted value
after fitting the model [67, 69]. Following prior research [69, 87], we calculate the FI importance of
SMs with two commonly known machine learning algorithms, such as Random Forest (RF) [12],
and Extreme Gradient Boost (XGB) [15].

The XGB model is an ML algorithm that is part of the family of gradient boost methods [53].
Based on the ensemble learning methodology, i.e., combining the knowledge of multiple models
on the same task, the XGB algorithm employs multiple decision trees in a greedy format, where
each of the subsequent trees corrects or refines the wrong results from the previous tree. Through
this technique, the algorithm defines weights for the included independent variables that require a
higher emphasis [16]. Therefore, it allows for analyzing the explainability of its model training by
quantifying the feature importance of the fitted model variables, in our case, the collected software
metrics.

The RF model also belongs to the ensemble learning family and is built based on the ensemble of
decision trees [13]. Based on random sampling, the RF algorithm performs multiple decision trees,
and the output is the aggregated value from the results obtained in the trees performed [12]. Based
on the scores from each of the parallel employed trees, it enables the representation of feature
scores to quantify the level at which each of the model features used to fit the trees contributes to
improving the performance of the model.

For RF, we use two established FI measures: Mean Decrease in Accuracy (MDA) and Mean
Decrease in Gini (MDG) [33, 54]. MDA reflects how much the model’s accuracy drops when a

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

20 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Table 8. Spearman’s p and Kendall’s 7 interpretation.

Perfect Strong Moderate Weak Zero

P +1.0 +0.9 +0.8 0.7 | £0.6 +0.5 +0.4 | £0.3 +0.2 0.1 0
2

+1.0 +0.8 *0.7 0.6 | £0.5 +0.4 +0.3 | *0. +0.1 £0.05 0

specific variable is permuted—higher values suggest higher importance. MDG, on the other hand,
measures how much a variable helps reduce node impurity in decision trees—again, higher scores
imply greater relevance. For XGB, we rely on Information Gain (IG) as the FI measurement, which
quantifies how much each variable contributes to the model relative to the total contribution of all
variables [15]. A higher IG indicates a stronger impact.

Since feature dimensionality can influence the learning process and FI scores, we evaluate three
scenarios: one using only process metrics, one using only product metrics, and one combining all
SMs.

Correlation Analysis. To investigate the statistical relationship between RMCs and SMs, we
conduct a correlation analysis. As part of testing our RQ4, we first assess the distribution of the
RMC data to determine the most appropriate correlation coefficient [28]. To test the distribution
data, we define the following hypotheses:

e Hopn 2. The detected RMCs are normally distributed.
e Hjn 2. The detected RMCs are not normally distributed.

We follow the rationale explained in RQ;; and adopt the AD test to test the normality on
Hoa 1. According to the test results, we could reject the null hypothesis in all cases. Therefore, to
test Hoc.1,0¢.2, Wwe must rely on a non-parametric test. More specifically, we select Spearman’s p
coefficient [81], which evaluates the monotonic relationship between two variables, and tests if one
variable’s change leads to the other variable’s change, in the same direction (positive correlation)
as well as in the opposite direction (negative correlation); and Kendall’s 7 coefficient [92], which
evaluates the similarity between two variables through their ordinal association. The correlation
coefficient denotes a positive correlation when the observations for the pair of variables present a
similar rank, and conversely, it presents a negative correlation if the orderings are dissimilar. To
interpret p and 7, we adopt Dancey and Reidy interpretation [19] (see Table 8).

Finally, since we rely on many hypothesis tests, we mitigate the risk of Type I error or family-wise
error at the level of « [34]. When multiple tests are conducted simultaneously, the probability
of falling into the aforementioned error increases. Therefore, we adopt the Bonferroni correc-
tion test [93], addressing the risk by adjusting globally the significance level (¢’ = & = % =
0.00008711), where « is the standard pre-defined significance level, i.e., usually equal to 0.05, and m
is the number of performed hypothesis operations. Nevertheless, existing literature acknowledges
that Bonferroni is overly conservative when dealing with large-scale hypothesis testing, therefore
we also adjust the p-value with the Benjamini-Hochberg (BH) method [9] to control the False
Discovery Rate (FDR). Unlike more conservative methods like Bonferroni correction that control
the Family-Wise Error Rate (FWER), the BH method allows for more discoveries, i.e., rejections of
null hypotheses, by limiting the expected proportion of false positives among those discoveries. It
works by ranking p-values and comparing them to an increasing threshold based on their rank,
offering a balance between discovery and error control [18].

3 RESULTS

This section presents the findings of our investigations and addresses the RQs:

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 21

3.1 Evaluating the capability of LLMs to extract developers’ RMs (RQ;)

To answer RQ;, we analyzed the set of 385 refactoring observations drawn from the sampling stage
performed during the data collection. In the following paragraphs, we present our results on the
evaluation of LLMs’ capabilities to extract developers’ RMs.

3.1.1 Evaluating the impact of adding different context variants within the prompt on the performance
of LLMs for identifying RMs (RQ; 1). With the setting for the ablation experiments defined (see
Section 2.4.2), we fed the LLM pipeline with 385 refactoring observations based on 15 different
ablations of our prompt. The collection of ablations consisted of every possible combination of
the refactoring context variants considered in our study, including the baseline ablation, which
contained all the refactoring content variants initially considered to feed the LLMs (see Table 6). First,
we calculated the accuracy of the LLMs with respect to the human GT, and thus we obtained the
results for the Recall, the F1-Score, and the FNR accuracy metrics (see Table 10). Before conducting
the designed statistical inference, we explored the distribution of incorrect answers provided by
each LLM across all the experimented ablations. Table 11 reports the mean, median, and standard
deviation of the number of refactoring observations in which the LLMs failed to provide a correct
RM with respect to the GT across the analyzed ablations. Overall, all the models presented a mean
value of more than 50 refactoring observations in which they did not provide correct refactoring
motivations, with V1 (Mistral NeMo) presenting the highest number of errors on average (70.86).
While V3 (Phi-4) presented the best results with the minimum mean error value, it was the LRM
(Marco-o1) that presented the lowest median in terms of erroneous RMs across different ablations.

Subsequently, to assess whether the results were normally distributed, and thus define whether
performing parametric or non-parametric statistical inference, we tested Hon 1 with the AD test
and we could reject it for the distribution of the three metrics (A? = 3.2271, p-value < 0.0001 for
Recall, A? = 4.7701, p-value < 0.0001 for F1-Score, and A? = 3.2271, p-value < 0.0001 for FNR). Hence,
to assess the statistical significance of the impact of different refactoring context variants on the
employed LLMs, we tested Hy ; with the WT test for each of the accuracy metrics, respectively, and
we could reject the null hypothesis for each of the metric distributions with a p-value of less than
0.0001, and a)(2 of 49.4786. Therefore, we could claim that there is a statistically significant
difference in the accuracy of the employed LLMs across the different context variant
combinations.

Building upon this, and to assess the difference in terms of accuracy between multiple pairs of
ablation experiment variants, we tested Hy ; with the non-parametric DT test, and we could reject
it in 5 out of 105 tested pairs for each of the analyzed accuracy metrics. Given the dimensionality
of the performed statistical testing, while we provide all the results within the shared replication
package, Table 9 presents the results for the statistically significant pairwise results. Based on the
resulting statistically significant pairwise tests, we could reject the null hypothesis in less than the
5% of the pairwise combinations for each of the metrics.

Interestingly, on the one hand, the baseline ablation did not result in statistically significant
improvements to the LLMs in terms of accuracy metrics in any of the tested multiple
pair comparisons. On the other hand, none of the ablations yielding statistically significant
results resulted in reporting significant improvements to the LLMs in terms of accuracy
metrics with respect to the baseline ablation.

Additionally, we revisited the raw results from the ablation experiments and calculated the share
of refactoring observations in which none of the LLMs provided the right results with respect
to the GT (Ground Truth). Interestingly, on average across all ablation experiments, none of the
LLMs provided correct answers with respect to the GT in 23.04% of the refactoring observations.
Furthermore, it was the baseline ablation experiment the one that presented the minimum

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

22 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Table 9. All pairs Dunn’s test statisti- Table 10. Summary statistics of Recall (R), F1-score, and FNR
cally significant results (p < 0.05). across all ablations.
AbLLA AbLB Metric Z p-value Median Mean Std. Dev.
AblL R F1 FNR R F1 FNR R F1 FNR
5 4 Recall 38470 0.0126
12 4 Recall 3.6243 00304 1 05987 07489 04013 0.6006 07504 0.3994 0.0196 0.0153 0.0196
2 07416 08516 0.2584 07435 0.8527 02565 0.0240 0.0158 0.0240
1 4 Recall 3.5939 00342 3 (3351 04975 0.6649 0.3312 04897 0.6688 0.1107 0.1262 0.1107
5 3 Recall 35838 0.0356 4 02416 03891 07584 0.2468 0.3956 0.7532 0.0166 0.0211 0.0166
4) Recall 35231 0.0448 5 07584 0.8626 02416 0.7610 0.8643 0.2390 0.0132 0.0085 0.0132
6 06312 07739 0.3688 0.6383 0.7788 0.3617 0.0345 0.0254 0.0345
5 4 F1 38470 0.0126 7 06091 07569 0.3909 0.5974 07471 0.4026 0.0476 0.0379 0.0476
. 8 0.6623 07968 03377 0.6578 0.7933 03422 0.0299 0.0219 0.0299
12 4 ! 36243 0.0304 o (7610 08641 02390 07318 0.8430 0.2682 00852 0.0591 0.0852
11 4 F1 35939 0.0342 10 03701 05395 0.6299 03701 05389 0.6299 0.0491 0.0524 0.0491
5 3 F1 35838 0.0356 11 07494 08567 0.2506 0.7494 0.8566 0.2506 0.0168 0.0110 0.0168
.) . 253 0.0048 12 07623 0.8648 0.2377 07461 0.8534 0.2539 0.0631 00422 0.0631
! 35231 : 13 0.6260 0.7696 03740 0.6227 0.7669 0.3773 0.0405 0.0308 0.0405
14 06429 07821 03571 0.6474 0.7852 03526 0.0485 0.0357 0.0485
4 z FNR - 35231 00448 15 06987 0.8226 03013 07143 0.8327 0.2857 0.0468 0.0312 0.0468
12 4 FNR -3.6243 0.0304
11 4 FNR 35939 0.0342 Table 11. Summary statistics on the occurrences of mistaken
5 3 FNR ~ -3.5838 0.0356 refactoring motivations per model.
5 4 FNR -3.8470 0.0126
Model Mean Median Std. Dev.
Marco ol (LRM) 55.1333 47 354700
Mistral NeMo (V1) 70.8667 65 323217
DeepSeek R1 (V2) 67.8667 75 31.9707
Phi 4 (V3) 50.9333 52 24.0905

share of cases with incorrect answers from the LLMs (8.83%), while the ablation considering
which only considered the commit message as the context variant (see Table 6) presented
the highest share of observations with no LLM providing right answers (69.35%).

Q 1. Which context variant to choose? }

Only 5% of the tested multiple pair comparisons between ablations reported statisti-
cally significant results. While some ablations reported significant improvements, there
were no improvements with respect to the baseline ablation.

3.1.2 Evaluating the accuracy of LLMs on extracting developers’ RMs (RQ; 2). Given the results
of RQ; 1, none of the defined ablations involved improvements in the LLMs or outperformed
the efficiency of the baseline ablation. This reflected a lack of empirical evidence supporting the
superiority of any reduced-context ablation over the originally designed prompt configuration.
Therefore, we proceeded using the baseline ablation as the default prompt variant for the remainder
of the study.

Thereby, to answer our RQ; ; we now evaluate how accurately each LLM identified RMs under
the baseline ablation. Figure 5 reports the accuracy metrics obtained by each of the four LLMs
when employing the baseline ablation.

Marco-o1, our LRM model, achieved the highest performance across metrics, with a Recall and
FNR of 0.78 and an F1-score of 0.88, indicating stronger capability to correctly identify developers’

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 23

0.83

it
o0
T

e
N
T

Metric Value
o
=
T

0.31

e
o
T

0 T

; o G = |Hi
Marco ol Mistral NeMo DeepSeek R1

Fig. 5. Performance of LLMs under the baseline prompt configuration, comparing Recall, FNR, and F1-score
across models.

RMs. The V3 model, Phi-4, yielded balanced results presenting the second-best scores with a Recall
and FNR of 0.71 and an F1-score of 0.83. Mistral NeMo and DeepSeek R1 models did not show a
significant lower performance as their results achieved a Recall and FNR values of 0.69 and 0.68,
and F1-scores around 0.82 and 0.81, respectively.

@ 2. Which LLM performed the best? }

Marco-o1, as the model adopted as LRM, provided the best results with a Recall and FNR
of 0.78 and an F1-score of 0.88.

3.1.3 On the limitations in LLMs performance when identifying RMs (RQ, 3). To answer our RQ; 3 we
performed a data-driven interpretation of the insights resulting from the human manual validation
of the analyzed sample. First, when investigating the disagreement severity among LLMs, we
observed that over half of the sample refactoring observations presented full agreement
with the human GT (50.10%). Conversely, 20.52% of the refactoring observations presented
severity level 1, which translated into cases where one single LLM was disagreeing with the GT
(Ground Truth), this was closely followed by the 16.90% of the cases presenting a systematic
disagreement of three LLMs disagreeing with the GT. Further cases in which all the LLMs
disagreed with the GT, or two of them disagreed, represented 0.003% and 11.43% of the analyzed
refactoring observations. These results suggest that, while many LLM errors appear to be isolated as
only one LLM out of four disagrees with the GT, multiple cases in which at least 3 LLMs disagreed
with the GT represent shared blind spots across models. Notably, this last aspect reveals potential
common limitations in LLM reasoning and contextual understanding.

Regarding the results obtained when calculating the Information Density in each of the refactoring
observations, we grouped the results by the disagreement severity level observed. Thus, we aimed
at exploring the naive association between the information density of the prompts provided to the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

24 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

LLMs and their disagreement severity. On average, prompts with the highest information density
score (6.76) resulted in full disagreement with the GT from all the LLMs. While simultaneous
disagreement severity levels of 3, 2, and 1 LLMs described a descending curve pattern with log-
scaled results of 5.84, 6.04, and 5.83, respectively, cases in which no LLM disagreed with the GT
showed a mean information density level of 5.92, allowing for more dense prompts than those
in which some of the LLMs disagreed. Nevertheless, overall, these results suggest that higher
information density within the context provided to the LLMs is naively associated with a
higher disagreement severity.

Lastly, we observed the resulting error categories and their number of occurrences from the
analyzed refactoring observations. Overall, from the 189 refactoring observations in which at least
one LLM disagreed with the human GT, the open-coded results revealed that most LLM failures
arise from substantive reasoning mistakes rather than superficial misunderstandings. For
instance, the category Factual Error (43.39%) demonstrated that LLMs are limited in accurately
interpreting the context provided in the prompt, as they provided answers that were simply incorrect.
The second largest category, Context misalignment (20.10%), in which LLMs represented tendencies
toward over-elaborated or misplaced reasoning. Further errors, Concept Deviation (17.99%), which
demonstrated the difficulty LLMs face in distinguishing between semantically similar motivations.
Other less represented errors, such as Unreal verbosity (10%) and Vagueness (4.76%), represented
tendencies toward over-elaborated or not well specified reasoning. Finally, a small share of errors
resulted in the Limited Scope category (3.70%), highlighting that LLMs might force the answer with
a valid, yet limited conclusion, thus demonstrating a lack of understanding of the topic by the LLM.

9 3. Identified LLM limitations |

The observed disagreement severity patterns indicate shared blind spots across LLMs.
This appears to be affected by the information density, as higher contextual density
naively associates with increased disagreement severity. The open-coded error cate-
gories demonstrate that most failures stem from context interpretation issues.

3.2 Refactoring Motivations: Alignment With Previous Studies (RQ3)

To answer RQ,, we analyzed a total of 758 pairs of RMs (Refactoring Motivations), where each pair
consisted of two RMs, one from the RMs identified in our study and the other one corresponding to
the RM reported by Silva et al. [79], both related to the same RT (Refactoring Type). Our findings
focus on the alignment with the reference study [79] and the agreement with human experts,
followed by an examination of the underlying RMs behind the observed disagreements. Therefore,
we needed to assess the alignments based on RM pairs resulting from the same RT.

Considering the volume of retrieved RMs, applying a 95% confidence level and a 5% error rate,
we sampled a subset of 198 pairs: 136 generated by the LRM (Large Reasoning Model), while 62
generated by V3 (see Section 2.4.3). Interestingly, V3 was found to produce more complete and
reliable RMs in these fallback cases. As a result, the final composition of our corpus of RMs was
composed by 69% LRM-generated and 31% V3-generated.

To assess the degree of alighment between these LLM-generated RMs and the ones available in
the reference study, we tasked the LLMs and three human experts to evaluate such alignment. In
59 cases out of 198, both the humans and the LLM judged no alignment with the reference study
(“No-No”, True Negatives), while 97 out of 198 showed agreement with both judging alignment
(“Yes-Yes”, True Positives). However, there were 42 cases of disagreement: in 8 instances, humans

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 25

Table 12. Representativeness level for the refactoring types Table 13. LLM Motivation Alignment
sampled in the manual validation for RQy. Agreement Contingency Table.
RT Representativeness # Agreement # Disagreement LLM Human Frequency %
EM 27.77% 30 25 No No 59 29.79
MM 17.17% 6 28 No Yes 8 4.04
MovC 13.64% 12 15 Yes No 34 1717
MA 8.59% 8 9 Yes Yes 97 48.99
M 8.08% 5 11
PUM 5.05% 8 1
PDA 5.05% 6 4 Table 14. Human Validated LLM RM
ESup 3.54% 4 2 Alignment with reference study RMs.
PDM 3.03% 4 2
RPack 3.03% 1 3 Classification Frequency %
PUA 2.53% 5 0
EI 2.53% 5 0 Extends 44 2222
No 49 2474
(#: Refers to frequency) Yes 105 53.03

identified alignment that the LLM did not (“Yes-No”, False Positives), whereas, in 34 instances, the
LLM assumed alignment where humans did not (“No-Yes”, False Positives) (see Table 13).

The LLMs generated RMs aligned well with human judgment in most cases, showing agreement
in 156 out of 198 cases (~80%), considering the combination of the true positives and true negatives
(see Table 13). Furthermore, we measured IRA (Inter-Rater Agreement) via Cohen’s kappa between
LLM and humans, resulting in a moderate agreement (k = 0.567) and it was statistically significant
(p < 0.0001) (see Table 15). Moreover, according to Bowker’s symmetry test, the disagreement
was systematic (y? = 16.10, p < 0.0001), suggesting the LLM consistently identifies diverse RMs
concerning the human ones in terms of interpretation or overlooking. Therefore, we can affirm
that there exists a statistically significant, moderate agreement between LLM and human RMs, but
systematic differences in interpretation remain.

We were also keen to investigate whether specific refactorings were more challenging to motivate
and agree upon. The most frequently represented operations were EM (Extract Method) with a
27.77%, MM (Move Method) with a 17.17%, and MC (Move Class) with a 13.64% (see Table 12). Less
common types included RPack (Rename Package) with a 3.03%, PUA (Pull Up Attribute) with a
2.53%, and EI (Extract Interface) with a 2.53%.

PUM (Pull Up Method) showed the strongest agreement between LLM and human RMs (8 out of
9 pairs aligned), followed by PUA (Pull Up Attribute) and EI both with perfect agreement (5 out of
5). In contrast, MM presented the most disagreement, with 28 disagreements out of 34 comparisons.
IM (Inline Method) (11 out of 16) and MC (15 out of 27) also showed significant disagreement. These
results suggest that LLMs struggle more with refactorings involving method or class movement.

Based on human annotations, 97 out of 198 RMs (approximately 49%) aligned with those
reported in the reference study.

Finally, to understand the rationale between humans and LLMs, we manually analyzed the
42 disagreement cases, categorizing them into five recurring disagreement categories, each
reflecting a fundamental difference in how LLMs and humans approach the interpretation of RMs
(see Table 16). Overall , LLMs tend to reason based on localized code context, e.g., method names
or syntax-level cues, likely because they lack access to full project information. In contrast, human

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

26 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Table 15. Agreement Test Human Motivation Vs LLM

Agreement Test Kappa Std Err Lower 95% Upper 95%
0,567 0,057 0,455 0,679
Asymptotic Test Prob >z Prob> |Z|
<,0001 <,0001
Bowker’s Test: Symmetry of Disagreement | ChiSquare Prob>ChiSq
16,095 <,0001

Table 16. Summary of manually detected disagreement categories between LLM extracted motivations and

those from the reference study.

Disagreement category Description Occurrences
Different Focus of Refactoring | Human focuses on attributes, classes, or packages while | 201 NN
Granularity LLM focuses more localized structures such as methods.
Intent Misalignment: Structural | Human focuses on structural aspects (e.g. clarity, vis- | 118 NN
vs Functional ibility...) while LLM emphasizes on a more functional

perspective (e.g. testability...).
Semantic vs Syntactic Under- | Human centres on semantic changes to clarify inten- | 46 Hll
standing tional code statements (e.g. ownership, package nam-

ing...) while LLM refers to class organisation or simple

syntactical clarity.
Future vs Present Orientation Humans often refer to future needs in their motivations | 26 l

(e.g. extension, scalability), while LLM focuses on imme-

diate operations such as current testing needs.
Interpretation of Refactoring | Human views refactoring as modular reorganization | 10 I
Scope while LLM sees the operation as an isolated change.

raters apply a more holistic perspective, considering architectural structures and long-term design

goals when assessing RMs.

For instance, in the Future vs Present Orientation category, humans often justify changes based

on anticipated future needs, such as extensibility or scalability, whereas LLMs focus on immediate
benefits, like current testability or readability. Similarly, in the Different Focus of Refactoring
Granularity category, LLMs interpret changes at the method level, while humans consider higher-
level structures, such as classes or packages. These patterns suggest that LLMs are proficient in
identifying surface-level improvements, but they frequently miss deeper, strategic rationales that
require an understanding of broader software design intent.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 27

Table 17. Summary of LLM Motivations that Extend Human-Reported Motivations.

Characteristics of LLM Extensions | Example Description Occurrences

Broader Scope LLM identifies additional aspects of refactoring (e.g., mov- | 40 I
ing attributes in addition to methods).

Maintainability and Readability | LLM highlights code maintainability and readability, ex- | 27 IEE—
Emphasis tending beyond human focus on code functionality.
Structural Clarity LLM explicitly addresses improvements to the structural | 7 Il
clarity and dependency injection of the code.
Enhanced Detail and Precision The LLM motivation clarifies human-provided motiva- | 3
tions with more precise and detailed reasoning.
Explicit Testing and Flexibility | LLM explicitly includes motivations related to improving | 3 il
Context testing and code flexibility.

Comprehensive Renaming Con- | Human motivation focuses narrowly on renaming; LLM | 2 I
text elaborates underlying reasons for renaming.

_[Q 4. Aligned or not Aligned? J

Only 47% of the LLM-generated RMs matched the prior reference study according
to human evaluation. While there was an 80% agreement between LLMs and humans
overall, systematic differences emerged; LLMs rely heavily on local code cues, while
humans factor in architectural and strategic goals. Certain refactorings, like Pull Up
Method, saw strong alignment, but Move Method and Move Class revealed persistent
LLM struggles, emphasizing the need for deeper context understanding to align fully with
past studies.

3.3 Refactoring Motivations: Extensions of Previous Studies (RQs)

To investigate how LLM-generated motivation content compares with prior studies, we examined
the degree to which they extend the state of the art. 105 out of 198 analyzed cases (53%) showed
direct matches with RMs previously reported in the reference study (see Table 14). Moreover, in
44 cases out of 198 (22%), the LLMs also agreed in the motivation reported in the reference
study, but they also inferred meaningful extensions or refinements with information such as
context-specific or fine-grained justifications.

Conversely, 49 cases (25%) did not align with any existing motivation, hinting at potentially
novel rationales.

More specifically, we identified seven distinct rationales where LLM-generated RMs expanded
human-reported ones (see Table 17), thus introducing new motivational elements by LLMs
that were not reported by human-reported motivations regarding the same refactoring
observation analyzed. These include adding missing technical details, e.g., clarifying the benefits
of a specific refactoring operation that human RMs overlooked, expanding the scope of changes, e.g.,
covering both method and attribute moves, and emphasizing aspects such as readability, structural
clarity, and testability.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

28 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

,—[@ 5. LLMs extend the state of the art }

While 53% of the RMs matched known reasons from past studies, the remaining 47%
revealed either extended (22%) or entirely new (25%) RMs. These included overlooked
technical details, broader refactoring scopes, and added focus on readability, structure,
and testability, highlighting that developers may be driven by richer and more diverse
RMs than previously collected.

Moreover, and to enrich our qualitative assessment, we investigated the extent to which devel-
opers explicitly acknowledge refactoring in commit messages. For that, we performed a regular
expression matching for the keyword family “refactor*” on all commits with RefactoringMiner-
detected refactorings (see Appendix G). We acknowledge this approach to be the best effort, as it
might not capture the totality of the self-admitted refactoring commits given the existing different
practices in which developers acknowledge the performance of refactoring activity within their
software development processes, and therefore, discuss its implications in Section 5 as a threat to
validity. Based on the performed text mining, only 4% of commits in the full dataset and 12% in
the manually validated sample were classified as self-admitted refactorings. This confirms that
developer motivations are rarely explicitly documented, given our mined data, reinforcing the need
for approaches such as LLMs, capable of performing code context deduction.

3.4 Software Metrics reflecting Refactoring Motivations (RQy)

This section investigates the relationship between developer RMs for refactoring and SMs, to
understand whether SMs can capture aspects of the same underlying developer rationale. Our aim
is threefold: (1) to categorize the RMs extracted from LLMs via open-coding, (2) to rank the SMs
based on their ability to capture human rationale among RMCs, and (3) to analyze the statistical
correlations between the identified RMCs and the computed metrics.

3.4.1 Open-Coding Refactoring Motivations into Categories. We first conducted LLM-assisted open-
coding on 385 sampled refactoring observations to identify recurring RMs, and validated the results
through human validation. This process yielded 167 distinct RMs, i.e., unique motivations among
the total of 385 RMs identified, which we grouped into 14 RMCs (see Table 18) for the sake of
encoding the existing collection of distinct RMs, and thus render FI and correlation analysis more
explainable. These categories encompass common refactoring rationales such as Code Clarity
and Readability (CCR), Code Simplification and Redundancy Reduction (CSRR), and
more specialized goals like Encapsulation and Abstraction. Moreover, based on performing a
miscellaneous definition of the presented RMCs, Table 18 also includes the classification that the
authors performed of the refactoring motivations identified by Silva et al. [79] with respect to each
RMC, thus allowing us to map the extent to which previous state-of-the-art refactoring motivations
align with findings resulting from this study.

Figure 6 summarizes the frequency distribution of the extracted RMs. We present the frequency
of total identified RMs grouped per RMC (blue), as well as the frequency of distinct or unique
RMs, thus showing not only how many motivations were identified per RMC but also how many
different motivations each RMC encapsulates. Among all, CCR (30.91%) and CSRR (24.04%) were
the most frequently occurring RMCs. However, when considering only the unique instances, CSRR
(20.36%) slightly surpassed CCR (17.36%), indicating a richer diversity of simplification-related RMs.

Among the most dominant RMCs, Code Clarity and Readability (CCR) emerged as the
most frequent, with 119 occurrences. This category encapsulates RMs centred on enhancing the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 29

comprehensibility, abstraction, and ease of reading code. It includes cases where developers aim to
refactor by renaming variables for clarity, extracting methods to reduce cognitive load, or organizing
code to align with human-readable logic.

Following closely, Code Simplification and Redundancy Reduction (CSRR) appeared 81
times and reflects RMs that emphasize minimizing unnecessary complexity. This includes reducing
duplicated logic, collapsing verbose constructs, or eliminating parameters and variables that no
longer serve a purpose. Together, CCR and CSRR account for over half of the observed RMs,
reinforcing that LLM-generated RMs often prioritize the legibility and minimalism of code.

The third most common category, Maintainability and Modularity (MM) (35 occurrences),
reflects efforts to improve the long-term evolvability and structural organization of the codebase.
RMs in this category often involve modularizing components, encapsulating change-prone logic,
and enhancing the separation of concerns to support sustainable maintenance.

Beyond these primary themes, several RMCs address more specific technical aspects. For example,
Encapsulation and Abstraction (EA) (24) focuses on isolating responsibilities and reducing the
surface of external interactions, which includes practices like hiding implementation details or
reducing class coupling. Similarly, Testing and Reliability (TR) (19) relates to improving the
testability of code, often through simplifying logic or making control flows more deterministic.

A notable portion of RMs also fell into Other Specialized Goals (OSG) (20), which act as
a catch-all for domain-specific or niche objectives that do not neatly fit into other categories.
This includes specialized algorithmic refactoring, compliance with domain-specific constraints, or
integration-related concerns. Less common but still essential RMCs included:

e Security and Safety (SS) (15), addressing concerns like thread safety, null safety, or elimi-
nating dangerous constructs.

o Exception and Error Handling (EEH) (13), which involves improving how code deals with

failures or unexpected states.

Type and Parameter Handling (TPH) (13), focusing on method signatures, type safety,

and semantic correctness.

e Support for (New) Functionalities (SF) (12), where the motivation is driven by expanding
or improving system capabilities.

o Structural Reorganization (SR) (11), representing architectural restructuring actions like
moving classes or extracting responsibilities.

e Consistency and Standardization (CS) (10), which targets uniformity in naming, format-
ting, or style to align with project standards.

e Performance and Resource Management (PRM) (8), dealing with optimizations such as
memory usage, threading, or execution time.

o Design Principles and Patterns (DPP) (5), the least represented, where the motivation
stems from aligning code with well-known design patterns or architectural principles.

Such a taxonomy of RMs lays the foundation for subsequent analysis, allowing us to study how
measurable SMs correlate with or indicate the presence of specific RMCs.

3.4.2 Investigating Metrics Importance for Refactoring Motivations Categories. Understanding what
drives developers to initiate refactoring activities is crucial for building intelligent, context-aware
recommendation systems, for instance. In this final stage to answer RQ4, we investigate which
SMs, both process and product metrics, are most indicative of specific RMCs. We employ two
state-of-the-art machine learning models, Random Forest (RF) and Extreme Gradient Boosting
(XGB), to compute feature importance scores and isolate the metrics that most strongly influence
model predictions, and two statistical tests, Spearman and Kendall, to measure the correlation of
such metrics with the RMCs.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

30 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

—_
(=]
o

Frequency
a
(=]

CCR CSRR MM EA 0SG TR SS TPH EEH SF SR PRM DPP

Fig. 6. Frequencies for extracted total motivations (blue) and unique motivation instances (grey).

Table 19. Refactoring Types Frequencies (#) for CCR ~ Table 20. Refactoring Types Frequencies (#) for CSRR

RMC RMC
RT # | RT # | RT # | RT # RT # | RT # | RT # | RT #
EV 8 | EAMM 6 | RM 5 | EM 4 EV 7 | RemP 711V 5 | MParam 3
RC 4 | RV 4 | CRT 3 | RParam 3 MV 3 | PUM 3 | RPA 3 | RVM 3
MovC 3 | ACM 3 | RAWL 3 | AMA 3 MAIM 2 | MerC 2 | MerM 2 | RCA 2
RLWP 3| IM 2 | MA 2 | CPT 2 RMA 2 | RTET 2 | RVA 2 | RLWP 2
RCA 2 | MAIM 2 | RPack 2 | RPWL 2 SC 2 | CAT 1| CCAM 1 | CPT 1
RemP 2 | MARM 2 | MARC 2 | SM 2 CRT 1 | CTDK 1 | ExA 1 | EM 1
v 2 | CVT 2 | RVM 2 | MPack 2 ESup 1| 1A 1| IM 1| IC 1
RMA 2 | MAA 2 | RA 2 | AVM 2 LP 1 | Mcat 1 | MCon 1 | MCA 1
RPM 2 | ACA 1 | RenP 1 | MARA 1 MVA 1| PV 1 | PUA 1 | RAA 1
RCWT 1 | SA 1 | TWR 1 | MovM 1 RCM 1 | RPM 1 | RAWV 1 | RCWT 1
RA 1 | MerA 1 | ESub 1 | AAM 1 RGWD 1 | RVWA 1 | SP 1
MCon 1 | RGWD 1 | RAA 1 | RVA 1 (RT: Refactoring Type)
RPA 1| MCode 1 | SClass 1 | CAT 1
PDA 1| LP 1 | RCM 1 | RAM 1

(RT: Refactoring Type)

RF Results. We analyzed process metrics importance scores according to RF in terms of Mean
Decrease in Accuracy (MDA) and Mean Decrease in Gini (MDG). MDA and MDG measure how
much each metric contributes to improving the model’s predictive performance (see Section 2.4.4).

From the MDA perspective, which reflects how much the model’s accuracy decreases when a
feature is randomly permuted, the most informative process metrics were ADEV (the cumulative
number of active developers per file) with a score of 7.37, and MINOR (number of minor contributors
to a file) with 6.70, indicating that diversity and activity of contributors are particularly relevant
signals when trying to predict the target outcome in the model (see Figure 7).

Conversely, MDG, which reflects how each variable contributes to the purity of the decision
tree splits (i.e., how well it separates the data), top-ranked EXP (average developer experience in
the project, 38.37), OEXP (ownership experience on a file, 38.28), COMM (number of commits per
file, 36.35), and NSCTR (developer spread across packages, 35.94). Hence, we note that long-term
developer familiarity with the project and the intensity of change activity in files and packages are
key indicators used by the model to capture structural patterns in the evolution of the codebase
that tend to co-occur with certain motivational categories.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 31

Table 18. Description of the open-coded refactoring motivation categories (blue: Occurrences in our study,
: Occurrences from the reference study [79]).

Motivation Category Description Occurrences

Code Clarity and Motivations aiming to improve the readability, abstraction, 119]

Readability (CCR) and understandability of the code. 29

Code Simplification and . . R A

Redundancy Reduction Ez(ciusstrc;: nl;cleicrlllixrclmfozc;mplexlty eliminating duplication, 81

(CSRR) & code. 1

Maintainability and Focuses on long-term maintainability and modular decom- 35 []

Modularity (MM) position of software components. 3

Encapsulation and Deals with isolating responsibilities and minimizing ex- 24]

Abstraction (EA) ternal dependencies or access. 0

Other Specialized Goals Motivations serving niche, technical, or domain-specific 20 |]

(0SG) purposes. 115

Testing and Reliability Refactorings aimed at improving code testability and reli- 19 []

(TR) ability. 6

Security and Safety (SS) Motivations ensuring safer, more secure code, suchasnull 15 [|
safety or thread safety. 0

Exception and Error Improving how exceptions and errors are managed in the 13 []

Handling (EEH) codebase. 0

Type and Parameter Type safety, parameter handling, and semantic correctness 13 []

Handling (TPH) of method inputs. 25

Support (New) 12 [|

Functionalities (SF) Enhancing functionality and introducing new features.)

Structure.xl . Movement or reclassification of structural elements. 1 .

Reorganization (SR) 92

Consistency and Aligning code with standards or maintaining consistent 10 []

Standardization (CS) patterns. 3

Performance and m

Resource Management Efficiency, memory, and threading improvements. 8

(PRM) 0

Design Principles and . . 5 [|

Patterns (DPP) Use of design patterns and separation of concerns.)

In summary, these findings reveal that both developer-related characteristics (e.g., experience
and ownership) and collaboration dynamics (e.g., number and type of contributors) play a central
role in shaping the model’s understanding of the data.

Regarding the importance of product metrics, from the MDA perspective, the top-ranking
product metrics were NS (number of modified subsystems, 5.37) and NUC (number of file changes
up to the current commit, 4.25). Such metrics reflect structural and evolutionary dimensions of the
system, i.e., NS reflects the scope of change across architectural units (i.e., subsystems), while NUC
emphasizes how frequently a file is subject to modification (see Figure 8). Their high importance
suggests that the extent of system modularity and change-proneness of code artifacts
are critical indicators for identifying relevant behavioral patterns such as RMC (Refactoring- or
Maintenance-related Changes).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

w
N

Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Mean decrease accuracy
(=] [sS] £ [}

T T T
|
I
I
|
x|
a

A & S A] >] A 9 S
= §O & & &é & o g& ¥ é&é\ éOQQ)
g 40| - -~
8
L 30|
b
(V]
g8 20
[P]
o
S 10
Q
= 0 ! ! ! ! ! ! ! ! m m ! m !
A o $ S A\ S N 8 N\ N X N S
$ O QY F $ & 3 <) & ¥ SN $
N § Q S S & R o $§ » %00 égg

Fig. 7. MDA and MDG importance results for Random Forest model trained with process metrics.

On the other hand, the MDG scores point to a different set of influential factors. The most
prominent metric was COMREAD (Val) (18.69), which assesses the comprehensive readability
of a class by incorporating textual, structural, and visual cues. This was followed by NS (17.84), AGE
(average time since the last change, 17.12), LT (lines of code before the change, 17.01), and LD (lines
deleted, 16.73). These findings underline the role of code readability, code age, and size-related
factors in shaping the model’s predictions. More specifically, the high relevance of readability
suggests that the ease of understanding code, possibly influencing developer decisions, could be a
key factor in detecting RMCs. Overall, the differences between MDA and MDG emphasize that
while structural evolution and change intensity dominate in MDA-based importance, code
quality and maintainability dimensions such as readability and code churn gain prominence
when viewed through the lens of MDG.

Finally, regarding the combined importance of both product and process metrics, MDA re-
sults emphasize the influence of developer-related characteristics, with SEXP (number of commits
a given developer performs in the considered package containing the given file) and NS emerging
as the most influential metrics (scores of 5.65 and 5.47, respectively). These are followed closely by
MINOR (number of contributors who contributed less than 5% of a given file up to the considered
commit), NDEV (number of distinct developers who changed any of the files involved in the
commits where the given file has been modified), and ADEV, further underscoring the significance
of both developers’ experience and collaboration dynamics in predicting refactoring, or main
developers-related change categories (RMCs) (see Figure 9). This blend of human and structural
factors suggests that both the quantity and diversity of developer contributions shape the likelihood
of code evolution events. On the other hand, the MDG scores highlight another important layer
of insight. The top metrics, OEXP (percentage of code lines authored by a given developer in
the project) with 13.84, EXP (13.53), and COMREAD (12.49), collectively represent developer
ownership, project experience, and code comprehensibility. These were followed closely by
NS and NSCTR (both 11.97), showing that the structural breadth of change across subsystems

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 33

>
g 6
-
=
Q
Q
S 4
]
1]
S
]
—
S 2f
<
=}
3
§ 0 T T T T T]
S & R & DL S S
é@@ {){3 \, 4‘3 @OQ eO Cjb @ & é&iooé\ é‘&@‘&g@ \"Q \Xv@é\é‘b Q\'éo%éoc)
ST @ﬂ@@
el
PO
E 20 |-
8
o 15
«
<
]
5 10
]
o
5 5|
0)
= 0
6 O & OO < s PSS S S
é@@végé)o&@ "gf’&é\e& FOgy r;?(& «z*‘o@ $ FFE IV ITIP S S
o ey
&
Fig. 8. MDA and MDG importance results for Random Forest model trained with product metrics.
>
g 6
-
=1
3
< g
Q
@
g
g 2
=]
g
2
B L FSF SR FEFFF S T PIFP SESES O F FPF LS @é‘&”x Ry~ $“°\
$ AR A PELE T EF P TIFFE VIS COFTIFE
T SIREITEF IO & S &&@@ FETE SET
5 & &
E
O
[
g 10
£
o
© 5
g
%
=
i§ @é&@ &’eoi&o@ S PES o“cy“ &ge, S 43@3 PFFF S @Y?fo c?‘og‘ %\" @‘o*&“ o‘%
&3) \§$y9§ <> Q,
& &

Fig.9. MDA and MDG importance results for Random Forest model trained with process and product metrics.

and packages also plays a key role. Altogether, the MDG-based ranking complements the MDA
findings, reinforcing the conclusion that RMCs are influenced by a combination of code quality,
developer engagement, and structural complexity.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

34 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

=)
R 0.15 |~
)
8 0.1
=
<
s
-
© 5-1072 |-
o
R
; . -
R R S
9 & > $ ¥ 9 > 9
$ S ¥ oYY Y& P &
Q
8
El
8§ s
Y
S 4
<
B
2
oy
E
0
NI R & & O & &
FFF TSI T8y
S

Fig. 11. Bar chart for product metrics importance from the trained XGB model.

XGB Results. XGB measures the importance of metrics in terms of Information Gain (IG). Regard-
ing process metrics, top-ranked NSCTR (16.05%) and EXP (15.35%), with COMM, OEXP, and a
second instance of ADD scoring between ~13-14% (see Figure 10). These results are consistent with
the RF-based findings, reaffirming that developer experience and the breadth of file/package-
level changes are dominant predictors of RMCs. The repetition of OEXP highlights its consistent
impact across learning models. Overall, these results strengthen the hypothesis that developer
history and cross-cutting modifications are key explanatory factors in process-driven code
evolution.

Regarding product metrics, AGE of a file (7.90%) and its length before modification (LT,
7.86%) emerged as the most informative (see Figure 11). These were followed by COMREAD (Val)
(7.30%), LD (number of lines removed from the given file in the considered commit) (6.99%), and
NDEYV (6.05%). These findings mirror the earlier MDG-based RF results, where code maturity,
comprehensibility, and developer interaction were pivotal. The emphasis on readability and
historical change patterns indicates that certain design and evolution characteristics make a file
more prone to refactorings or maintenance.

Finally, when combining all metrics in the XGB training (see Figure 12), COMREAD surfaced
as the most important variable (6.45%), affirming the centrality of code comprehensibility
in predicting RMs. This was followed by NSCTR (6.25%), the metric capturing change spread
across packages, and COMM (5.52%), EXP (5.18%), and OEXP (5.13%). The consistency across
modeling techniques and metric types provides strong evidence that code readability, developer

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 35

1072

S o6
<
)
8 4
=1
<
=
o 2
o
£
0
AR 5 S F S TR DL F S AL OO NS S LR EF DS S DD S S
FEFER FP O CI$F O TE SEPEF TS S F PP T CH S F I T T
SES FFVY S & é%& RS Q‘ig& Y VRFEE i@% iéx\\o\\ S
& © PR S
¢ & o
N2
& 0%33’
C

Fig. 12. Bar chart for product and process metrics importance according to XGBoost.

experience, and change scope are jointly the most critical signals for understanding why RMCs
occur.

Q 6. Metrics Importance }

Developer experience, code readability, and change scope are the strongest predictors of
RMCs, with Random Forest emphasizing ownership and commits, and XGB highlighting
readability and change propagation.

3.4.3 Investigating Metrics Correlation with Refactoring Motivation Categories. The AD (Anderson-
Darling) test results allowed us to reject the null hypothesis of normal data distribution (Hyu 2),
therefore we must rely in non-parametric correlation analysis using Spearman’s p and Kendall’s 7.

Spearman Correlation Results. Figure 13 displays the correlation matrix, both uncorrected and
adjusted with Bonferroni and BH (Benjamini-Hochberg) corrections. Out of 574 tests, we could
reject the null hypothesis Hy in 39 uncorrected correlations. After correction, we could only reject
the null hypothesis Hy in 17 cases following the BH method.

Kendall Correlation Results. The uncorrected Kendall 7 allowed us to reject the null hypothesis
Hp in 39 out of 574 cases (see Figure 14), consistent with Spearman’s. However, no significant
results remained after applying Bonferroni or BH corrections.

Metrics-based Results. The correlation analysis revealed several noteworthy, albeit weak, trends
between specific metrics and RMs. Metrics like COMREAD, NF (number of modified files), NSCTR,
and ENTROPY showed weak positive correlations with code clarity (CCR) motivations, suggest-
ing that developers may prioritize readability and the modular spread of changes when aiming
to clarify code. Interestingly, COMREAD and NOF (number of fields declared in a class) were
negatively correlated with code standardization (CS) motivations, possibly indicating that overly
complex or large field declarations may hinder standardization efforts.

For code simplification and removal of redundancy (CSRR), weak positive associations
were found with DELE, LD, NADEV, and SEXP, reflecting a tendency to simplify code where there
is significant churn and developer interaction. LA positively correlated with abstraction-related
RMs, while EXP showed a weak negative relationship, possibly indicating that less experienced
teams may abstract more aggressively.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

36 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

SM

COMREAD (Cat)
COMREAD (Val)

- a = g Z % Z = L= — = [D—‘ &-n puw
cmwmg aoo Uw = R @ B 4 y 2
EERE £9088.86588888, 3582859582
CLCUOUU EZZZZZZZZZZZZZZZZ00EEwn S
1
CCR
cs
CSRR 09
DPP
= A 0.8
° EEH
E MM 07
Y 06
S SF
SR 0.5
s
TPH 0.4
TR
CCR 03
cs
CSRR 0.2
DPP
o=
= EA 0.1
&) e EEH
= MM
2 o 0
= 086
= PRM
2] SF -0.1
SR
s -0.2
TPH
TR 03
CCR
Ccs 0.4
CSRR
DPP 0.5
4 o0 EA
S 5 EH 06
£ £ MM
E S 0sG 0.7
5 é PRM
=] SF -0.8
SR
ss -09
TPH
R 1
Legend: a) Uncorrected (0): 0.05 b) Bonferroni (0): 0.05/ 574 ¢) BH (@): (0.05 X rank;)/ 574

[Statistically significant correlations for a) and ¢) [Null (zero) correlation coefficient

Fig. 13. Heat-map representing the Spearman correlation matrix of RMCs with SMs for the uncorrected,
Bonferroni corrected, and BH corrected probabilities.

The AGE metric was negatively linked to technical performance and hygiene (TPH) mo-
tivations, suggesting that older files might be neglected in performance-focused refactoring. For
structural reorganization (SR), DIT showed a weak positive correlation, highlighting deeper in-
heritance trees as a refactoring trigger, whereas NUC and NSCTR showed negative ones, implying
that files with broader or frequent changes may be less targeted for structural reshaping.

Lastly, REXP correlated weakly positively with RMs tied to supporting new functionalities
(SF), while COMREAD, ADEV, and REXP showed weak negative correlations with maintenance
and modernization (MM), suggesting that highly readable or frequently changed code may not
always be the primary target for modernization.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 37

SM

COMREAD (Cat)
COMREAD (Val)
DDEV
ENTROPY

EXP
HsLCOM

CEXP
COMM
DELE
DIT

LA

LD
Loc

LT
MINOR
NADEV
NCOMM
NDDEV
NDEV
NF
NOC
NOF
NOM
NOPF
NOPM
NOSF
NOSI
NOSM
NS
NSCTR
NUC
OEXP
OWN
REXP
RFC
SEXP
WMC

ADD
ADEV
AGE
CBO

TR 1
TPH
SS 0.9
SR
SF [0.8
PRM \
0SG 0.7
MM \
EEH 0.6
EA [
DPP 0.5
CSRR \
CS l 0.4
CCR
TR
TPH [[
ss| || 1 L 02
SR []
SF | [
PRM \
0SG | L o
MM | [1
EEH
EA [L0
DPP | ||
CSRR 1] -0z
cs| |
CCR | - 03
TR
TPH 1] 1] - 04
ss \
SR -0.5
SF l
PRM l l l 0.6
0SG \ l
MM LTI \ -0.7
EEH l l {
EA L[] [-0.8
DPP l
CSRR \ f l 0.9
\

Uncorrected

F 0.3

-0l

RMC
Bonferroni

Benjamini-
Hochberg

cs \
CCR l

-1

Legend: a) Uncorrected (0): 0.05 b) Bonferroni (0): 0.05/ 574 ¢) BH (): (0.05 X rank;) / 574

[0 Statistically significant correlations for a) and ¢) [0 Null (zero) correlation coefficient

Fig. 14. Heat-map representing the Kendall correlation matrix of RMCs with SMs for the uncorrected
probabilities.

Q7. Scarce Correlation and Statistical Significance]J

Out of 574 tests, Spearman’s p identified 17 significant correlations after BH correction,
revealing weak but interpretable links, e.g., code clarity (CCR) with readability and entropy;,
and maintainability (MM) with deletion and change frequency. Conversely, Kendall’s ©
yielded no significant results post-correction.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

38 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Answering RQ,. Our findings revealed that both process and product metrics play complementary
roles in predicting RMs. RF’s MDA favored contributor dynamics and modularity, highlighting
metrics like ADEV, MINOR, and NS, while its MDG emphasized experience (EXP, OEXP) and code
change intensity (COMM, NSCTR). Product-wise, structural complexity (NS, NUC) and readability
(COMREAD.Val) emerged as important signals. XGB corroborated these trends: for process metrics,
developer experience, and file/package change spread (EXP, NSCTR) stood out; for product metrics,
file age (AGE), size (LT), and readability again topped the list. Notably, across both models, devel-
oper engagement, code comprehensibility, and structural change scope consistently ranked as key
predictors of RMCs. The findings underscore a dual influence of social and technical dimensions
in shaping code evolution. Similarly, metrics such as EXP, OEXP, and SEXP do not approximate
personal intention but rather capture structural patterns in how code evolves. For example, high
SEXP—indicating that a contributor has long-standing involvement in a subsystem—was frequently
associated with simplification-oriented refactorings, as experienced developers possess the con-
textual understanding needed to reduce accumulated complexity. Conversely, lower ownership
(OEXP) combined with a higher proportion of minor contributors (MINOR) tended to align with
readability-driven refactorings, where developers improve comprehensibility before adding new
functionality. Metrics like ADEV and NDEV, reflecting the number of developers interacting with a
file, often corresponded to motivations targeting maintainability and coordination, such as naming
updates or structural clarifications in collaboratively edited areas. Overall, these interpretations
demonstrate that the metrics identified as important by RF, XGB and the conducted correlation anal-
ysis represent meaningful contextual signals of developer refactoring motivation, capturing both
human and technical dimensions of code evolution and helping to explain why specific refactoring
motivation categories tend to arise in particular development contexts.

,_{ Q 8. Metrics and Refactoring Motivations }

Both RF and XGB models converge on three main predictors of RMs: developer expe-
rience, code readability, and change scope. RF highlights developer ownership and
activity (e.g., EXP, OEXP, COMM), while XGB reinforces the role of code comprehensibility
(COMREAD) and structural evolution (NSCTR, AGE). These findings collectively underscore
the intertwined effect of human factors and code characteristics on driving refactoring
decisions.

4 DISCUSSION

We leverage the following section to discuss the key findings of our study by relating the outcomes
to every research question and identifying actionable implications for researchers and practitioners.
We also address the applicability of our results with respect to future refactoring recommendation
systems.

Our results for RQ; revealed that LLM performance in identifying developers’ RMs strongly
depends on the completeness of the provided context. In fact, the conducted ablation experiment
(RQ;.1) demonstrated that removing context variants does not significantly improve the LLMs’
accuracy, thereby indicating that, at least, there is no evidence indicating that LLMs benefit
from more concise and synthesized prompt context, and neither in the opposite direction.
Based on this premise, we followed our analysis with the baseline prompt context, and analyzing the
accuracy of the adopted LLMs (RQ; 2), Marco o1 achieved the strongest performance, yet there
were no significant differences among the remaining LLMs, confirming that although results look

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 39

promising, LLMs remain inaccurate as developer RM identifiers. Moving into RQ; 3, evidence
on nearly half of the disagreements involving one or two models failing simultaneously denoted
shared blind spots across LLMs. These failures were associated with a higher information
density received by the LLMs in the prompt, suggesting LLMs’ difficulty in understanding long and
dense contexts. When open-coding the potential error categories identified among the mistaken
LLMs’ answers, results showed that misinterpretations and conceptual confusions dominate,
rather than superficial misunderstandings. Overall, results in RQ; demonstrated that while the
LLMs’ capabilities for RM identification are promising in many cases, they still hold systematic
weaknesses such as context overload or limitations for deeper reasoning.

alCl

1. Main insights from RQ;: Full-context prompts remain essential, as experimented
ablations did not provide accuracy improvements. LLM accuracy is promising, but RM
identification cannot yet fully depend on LLM deduction capabilities. Identified limitation
from LLMs while identifying RM entangle shared reasoning blind spots as multiple LLMs
failed together, higher information density demonstrated naive association with higher
disagreement severity. In addition, most mistakes stemmed from factual inaccuracies.

In addition, since motivations may differ depending on whether refactoring is performed in-
dependently or as a part of a broader process or task, we additionally mined our refactoring
dataset to estimate the share of bug-fixing refactoring commits (see Appendix F). Using regular
expression-based pattern matching, we found that out of all refactoring commits, 54% corresponded
to issue-fixing activity, while in the manually validated sample, this proportion dropped to 28%,
based on the total size of the sample. These results suggest that floss refactorings represent the
major share of refactoring activity to the extent of the mined software projects.

&

2.Root-Canal vs. Floss Refactoring.: Refactoring operations opportunistically performed
while addressing bugs represent a substantial share of the mined refactoring activity.

As shown in RQ,, LLMs agreed with human judgments in 80% of the cases, but only 47%
matched RMs from the reference study. Systematic disagreements emerged, as confirmed by
Bowker’s test, with LLMs tending to interpret RMs based on local code cues, names, syntax, and
immediate readability, rather than broader architectural goals. For instance, RMs for MM and MC
saw substantial misalignment, with LLMs overlooking structural intentions behind these changes.
In contrast, Pull Up operations had a near-perfect alignment, likely due to their localized semantics.

Human raters, instead, often based their evaluations on project-wide consistency, long-term
maintainability, and design abstraction, factors that are invisible in the local code snapshot available
to the LLM. This gap reveals that while LLMs can mimic reasoning for simple refactorings, they
fall short in capturing RMs rooted in architecture or foresight.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

40 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

3. Local vs Structural Reasoning: LLM-generated RMs should be interpreted as partial
approximations. They are effective for routine, localized changes but unreliable for strategic
or architectural reasoning. To close this gap, future tools could expand LLM context with
project-wide metadata or history-aware embeddings.

According to RQs3, only 53% of LLM-generated RMs aligned exactly with the prior reference
study [79]. However, in 22% of the cases, LLMs enriched the rationale by adding context-specific nu-
ances or detailing effects on testability, naming conventions, or structural clarity. These elaborations
were never contradictory; instead, they made tacit developer knowledge explicit.

This ability to extend RMs identified by Silva et al. [79] aligns with the finding that LLMs consis-
tently emphasized clarity, maintainability, and readability. For example, when humans described
motivation as “renaming,” the LLM often contextualized it in terms of onboarding ease or cognitive
load, surfacing deeper reasoning that might otherwise be lost.

4. Enriching Motivation Clarity: LLMs offer value by articulating implicit reasoning.
Their output can help with onboarding, documentation, or code review, surfacing hidden
RMs that developers rarely write down. This supports knowledge retention beyond the act
of coding.

The RQ4 analysis of 385 samples revealed that over 55% of all RMs were aimed at improving
code clarity (CCR) or simplifying redundant logic (CSRR). Most RMs stemmed from pragmatic
needs, naming clarity, method simplification, and parameter cleanup, rather than enforcing design
principles or structural overhauls. Refactoring was thus largely incremental, not architectural.

This aligns with our earlier findings: LLMs were effective when refactorings were localized and
incremental, and struggled when RMs depended on broader system-level reasoning. These trends
match developer behavior observed in earlier work [23].

5. Pragmatism Over Principles: Developers often refactor for short-term clarity, not
ideal long-term architecture. Tools that surface refactoring suggestions should prioritize
simplicity, understandability, and friction reduction over theoretical design goals.

Our machine learning and correlation analysis inferences revealed that while some metrics
(e.g., EXP, OEXP, COMREAD) were top-ranked by importance models (RF/XGB), their correlation
with motivation categories was weak and often statistically insignificant. For example, only 17
correlations passed significance after correction in Spearman’s analysis, and none did in Kendall’s.

This suggests metrics alone lack the semantic richness to explain why developers refactor, which
slightly deviates from prior works [60]. However, their role as signals is non-negligible: metrics
related to developer engagement, file age, and code readability consistently ranked high in feature
importance scores, indicating they can guide or contextualize predictions.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 41

6. Metrics in a Supporting Role: Metrics do not reflect motivation directly but can inform
LLMs of context and likelihood. They are better used as input features or filters in hybrid
systems rather than as standalone predictors.

Our research stemmed from the idea of supporting developers with a catalogue of SMs, informa-
tive on the behaviour of the drawn RMCs. A question that naturally arises from this research is
whether our findings support the development of LLM-based refactoring recommendation systems.
And the response is tentatively affirmative. LLMs showed a satisfactory ability to classify and justify
RMs, and they were particularly resilient when justifying simple, localized refactoring intentions.
They struggled with architectural or cross-cutting RMs and required human judgment to resolve
open cases. The weak correlation between metrics and RMs means that a metric-only system would
be unreliable. The only plausible direction is, therefore, hybrid systems: metric-informed LLMs
that blend behavioral hints with natural language reasoning to suggest refactorings and explain
why they do so.

7. LLM-Guided Refactoring Systems: LLMs can be the basis of explanation- and clarity-
focused refactoring recommendation systems. To make them more reliable, these systems
can include SMs as well as project-level context, so that recommendations reflect both code
attributes and probable developer intention.

Our results highlight key limitations and opportunities for research in Generative Al-
assisted software engineering. First, the systematic differences between LLM and human RMs
suggest the need to explore methods for enriching LLM inputs with higher-order architectural
or historical context. Researchers should investigate techniques such as long-context prompting,
integration of architectural models, and retrieval-augmented generation (RAG) that can provide
LLMs with broader system-level signals. The observed ability of LLMs to extend developer RMs
also opens avenues for studying how to formalize tacit knowledge and how to balance verbosity
with precision in generated justifications. Additionally, the weak correlation between metrics
and motivation categories underscores a gap in our current abstraction tools. Research should
re-evaluate which metrics meaningfully reflect cognitive developer behavior or develop new hybrid
indicators that better represent intent. Finally, the potential of hybrid LLM-metric models invites
empirical validation: how can we measure trust, usability, and impact of such systems in real-world
settings?

Practitioners can leverage LLMs as assistants in tasks that require expressing, documenting, or
reviewing code change rationales. Our results show that LLMs are especially useful in surfacing
developer intent for routine, local refactorings and in articulating implicit reasoning that is often left
undocumented. Teams can integrate LLMs into code review pipelines or commit templates to clarify
RMs and make them traceable over time. However, caution is needed: for refactorings that touch
architectural layers or involve non-local effects, LLMs should be treated as suggestive rather than
authoritative. Moreover, while SMs remain useful, especially those reflecting experience and activity,
they should complement, not substitute, LLM output. A practitioner-facing system that combines

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

42 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

LLM insights with contextual metrics can support better onboarding, reduce misunderstanding in
reviews, and help preserve architectural consistency by making rationale explicit and shareable.

5 THREATS TO VALIDITY

This section discusses the threats to validity, including internal validity, external validity, construct
validity, and reliability. Moreover, we explain the different adopted tactics [92].

Construct Validity. We acknowledge that using LLMs for semi-supervised multi-class classifica-
tion may pose a threat to the results of this study, as it assumes the Al-based feedback is correct.
However, to minimize this threat, we considered using state-of-the-art as well as well-valued dis-
tilled LLMs such as Marco-o1 and Mistral NeMo, among others. Similarly, we provided the models
with localized version control data related to the RM to support the prompt with project context,
which might result in local reasoning output from the LLMs. We considered supporting the models
with such a level of local context as the first approach for leveraging LLMs in RM identification,
as no previous study had used them for such a task. Silva et al [79] had already considered the
threat of using RMT for mining the commits in which the refactorings were performed, as some
classifications may be missed. However, we still consider using RMT to provide consistency to our
results, as one of our goals is to validate the ground-truth motivations provided by developers.
Furthermore, RMT remains the state-of-the-art refactoring mining tool to date. We also identify a
threat to the validity of our results in the use of the refactoring commits, and their corresponding
RMs, sourced from the reference study, which were derived from projects we did not mine with
RMT in our study due to computational resource limitations. We tackled this threat by mining
the SM related to refactoring commits in which the affected RMs from the reference study were
identified, and hence, we had all the required data to still consider these refactoring observations
as ground-truth.

Internal Validity. One of the main outcomes of this study is the publication of a set of refac-
toring motivations related to code refactoring types already studied by prior work, as well as
refactoring types still not investigated. These motivations are based on the combination of LLMs’
natural language understanding capabilities and the human validation performed in our study. To
better align the results from our study, we had to focus our analysis on a primary motivation per
refactoring operation, therefore underrepresenting secondary motivations. Missing motivations
from developers and potential motivations yet to be discovered by analyzing further projects may
contribute to the possible lack of accuracy. However, we understand that the motivations provided
by human developers [79] provide the closest feedback to the real motivations for committing
refactoring, and therefore, diminish this type of threat. We acknowledge the existing threat to
validity in considering OSS LLMs for the motivation identification stage of the analysis. Leveraging
the latest state-of-the-art models depends on the budget and the specific required computational
power. To tackle this threat, we searched for open-source alternatives that claim to present similar
results as the current state-of-the-art reasoning models. Similarly, future work should explore
extended analyses of Al-based refactoring-motivation identification, ideally incorporating multiple
motivation scenarios in a more comprehensive qualitative setting. Another concern related to
our inclusion of refactorings occurring outside pull requests (PRs), which extends prior reference
studies [60]. While this choice expands the scope of mined data, it may raise the question of whether
PR and non-PR refactorings differ in ways that could affect the interpretation of our results. With
the results from the mined data representing a minority of refactoring operations being related to
PR workflows, we consider the sample to remain representative of the overall refactoring landscape.
Nonetheless, future work could further explore whether refactoring motivations differ between
PR-related and non-PR-related development workflows. Lastly, we also acknowledge the existing
threat to validity in considering regular expression matching within the commit messages for the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 43

issue-fixing commit detection, as well as for the self-admitted refactoring detection. Hence, we
acknowledge the use of this technique as a best effort given its complexity, and it is currently an
ongoing research topic in Software Engineering research [4, 28].

External Validity. This study only considers open source projects, based on the Java pro-
gramming language and hosted in GitHub. Therefore, the results of this study, even though they
aim to cover a wide range of projects, cannot claim to apply to systems outside the open-source
community or projects developed in a different programming language. However, the presented
study plan aimed to analyze all the existing refactoring activities of 124 projects and all their
mineable refactoring types supported by the adopted mining tool, which, if the results provide a
clear guideline of metrics, would provide one of the most consistent recommendation guidelines
for refactoring activity in the field.

Reliability. The planned data analysis is presented in a format that aims to provide answers to
both the refactoring cases in which the motivation is identifiable and when discrepancies may exist,
and therefore, already considered motivations may not fit the refactoring case. Similarly, the choice
of statistical tests detailed in this article aims at covering the possible statistical assumptions that
differently distributed data may require for performing statistical testing. The source data provides
a considerable set of GitHub-hosted projects. Yet, given the existing number of projects published
on the mentioned platform, only a small portion of the samples was considered. Therefore, we
consider as a threat the hypothetical differences in results if the same analysis were implemented in
a different sample of projects. However, the validation of the developer-based motivations through
the results of this study would minimize the presented threat, as we understand that the motivations
presented by developers are not the result of their performance in the analyzed projects but the
result of their entire development career, and hence the product of a larger number of projects.

6 RELATED WORK

This section reviews related work on refactoring recommendations, outlining the current state of
research and presenting a detailed comparison with our approach in Table 21.

Software refactoring can improve different aspects of software quality, such as readability and
maintainability [55]. However, refactoring is also a time-consuming task and, as such, should
be appropriately prioritized, and the scenario concerning refactoring operations should be thor-
oughly studied [40]. Therefore, to meet practitioners’ needs, we must understand their motivations
when performing such refactoring operations [79] to better identify the scenarios in which code
refactoring is needed.

Wang [89] investigated human motivations for performing refactoring operations by conducting
multiple case studies across four software development organizations and with a total of ten inter-
views with professional software developers. Their work emphasized empirically and qualitatively
understanding the reasons why developers choose to refactor code. Through grounded-theory
analysis of interview data, their work identified personal motivations such as responsibility for
code quality, self-esteem, and unconscious habits, as well as external motivators such as perceived
procedural value, reduction of assigned tasks, and threats of punishment at work. Their results
offered a foundational understanding of refactoring rationale, aligning with empirical research
focused on the developer perspective.

Tsantalis et al. [86] conducted a multidimensional empirical investigation of refactoring activity
across three widely used open-source projects, such as JUnit, HTTPCore, and HTTPClient, among
others. In their study, they combined automated UMLDIff-based refactoring detection with manual
qualitative analysis to uncover developer motivations behind applied refactorings. For that, they
manually examined hundreds of refactoring observations and identified a motivation taxonomy

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

44 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

centered on the topics of code smell resolution, extension-oriented changes, and backward compat-
ibility preservation, among others. Their results revealed that developers frequently refactor not
only to improve design quality but also to introduce extension points and maintain stable APIs.

Silva et al. [79] presented the first large-scale empirical study based on the analysis of refactoring
operations by collecting hundreds of Java projects from GitHub, and detecting thousands of
refactoring operations with the REFACTORINGMINER tool. Subsequently, they directly asked the
developers who performed them to explain their actions. Through thematic analysis consisting of
463 refactorings from 222 commits across 124 software projects, the authors generated a catalogue
of 44 distinct motivations concerning 12 refactoring types, revealing that real-world refactoring is
primarily driven by evolving requirements such as adding new features, enabling extensions, or
supporting API changes. Thus, this study provided strong empirical evidence to build the current
ground truth on the fact that developers refactor code to support ongoing maintenance tasks, and
not only to fix design flaws.

Palomba et al. [59] investigated 12,922 manually validated refactoring operations across 63
releases from projects Ant, ArgoUML, and Xerces-J to investigate how different types of code
changes enhance the application of refactoring operations. By analyzing modifications such as
Fault Repairing, Feature Introduction, and General maintenance across 28 refactoring types, they
confirmed that refactoring is more often triggered by evolving requirements than by quality issues
alone, thus matching previous research efforts [79].

AlOmar et al. [4] studied how developers express their motivation leading them to perform
refactoring activities by mining more than 322,000 commit messages related to commits with
identified refactoring operations across a set of open-source Java projects. Through their commit
message approach, they introduced the concept of Self-admitted refactoring to capture explicit
developer-documented refactoring actions. Their findings show that developers do frequently
document the reasons for performing refactoring operations with motivations such as improving
abstraction, reducing complexity, and enhancing readability, among others. Moreover, their findings
reflected that commits with self-admitted refactoring exhibited more refactoring activity than those
without, demonstrating that self-affirmed refactoring messages provide a reliable window into the
motivations guiding developers when performing refactoring activity.

Paixdo et al. [58] empirically investigated how developers perform and reason about their
refactoring operations during modern code review by mining 1,780 reviewed code changes from
six open-source systems. They manually reviewed discussions and revision histories, thereby
classifying developer motivations into seven main categories, such as feature addition, bug fixing,
and pure refactoring, among others. Thus, they demonstrated how such motivations lead to the
selection, composition, and evolution of 7,259 detected refactoring operations. It is important to
note that the authors highlighted the fact that refactorings in code review are rarely isolated, since
they are part of iterative, motivation-based compositions that adapt as code reviewers provide
feedback.

Recently, Ivers et al. [35] investigated the criteria industry developers use when deciding which
specific refactoring changes to apply, to better understand industrial practitioners’ perceptions.
They conducted ten in-depth practitioner interviews, a large industry survey composed of 142
interviewees, and an analysis of 26 state-of-the-art refactoring recommendation tools. Thereby,
the authors identified thirteen main reasons that guide industry-based refactoring choices. These
included process-oriented concerns such as change size, cost/time ratio, and change proneness, as well
as software quality concerns like code complexity, readability, and code scalability, among others.
While the performed survey showed that industry developers highly supported the identified
thirteen reasons, the analysis of the refactoring recommendation tools shows that only 5 of the
reasons are currently covered by the state-of-the-art in refactoring recommendation. By highlighting

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 45

this mismatch, the study exposed a significant gap between developer decision-making practices
and current automated refactoring recommendation capabilities.

Focusing on the insights hidden behind developers’ refactoring motivations, Pantiuchina et al.
[60] performed a large-scale study to understand why developers refactor code in open-source
projects, complementing previous findings from developer surveys [79]. They analyzed 287,813
refactoring operations across 150 systems, examining the relationship between refactoring oper-
ations and process/product metrics. The authors highlighted that a relationship exists between
metrics and refactoring operations, along with a detailed taxonomy of refactoring motivations. Our

Table 21. Related work on the existing previous research on Refactoring Recommendation.

Wang [89] Tsantalis et al. [86] Silva et al. [79] Palomba et al. [59]
Granularity Human rationale Class, Method, Package Refactoring Class, Method, Package
PL - Java Java Java
Projects 4 3 124 3
Analysis Scope Qualitative assessment, Ex- Quantitative and qualita- Human rationale analysis Quantitative classitication
ploratory empirical ~ study, tive assessment

Human rationale analysis

Dataset 10 interview transcripts Own mining Own mining Bavota et al. [8]

Model Empirical grounded-theory ~ UMLDIff, Open-Coding, = Thematic Analysis Model Logistic regression
model Rule-based classification

Mining tools - UMLDIff REFACTORINGMINER REFFINDER

Refactoring types 0 11 12 28

Discussion Yes Yes Yes Yes

Results Yes Yes Yes No

Scripts No No Yes No

Datasets No No Yes No
AlOmar et al. [4] Paixdo et al. [58] Ivers et al. [35] Pantiuchina et al. [60]

Granularity Class, Method, Package, At- Class, Method, Attribute Class, Method, Package Class, Method, Package, At-
tribute tribute

PL Java Java - Java

Projects 3,795 6 - 150

Analysis Scope

Large-scale empirical mining
study

Manual investigation on
code reviews

Interview-based analysis

Quantitative/Qualitative
analysis

Dataset Own mining Paixdo et al. [57] Interview transcripts Own mining

Model Text mining, manual thematic =~ Manual classification Thematic analysis Mixed-effect logistic regres-
analysis sion

Mining tools REFACTORINGMINER REFACTORINGMINER - REFACTORINGMINER,

DECOR, PMD, CK

Refactoring types 16 13 - 15

Discussion Yes Yes Yes Yes

Results No Yes Yes Yes

Scripts No Yes No No

Datasets No Yes Yes Yes
Our work

Granularity Source Code

PL Java

Projects 114

Analysis Scope
Dataset
Model

Mining tools

Descriptive analysis, Qualitative
assessment, Taxonomy

Silva et al. [79]
Marco-o1, Deepseek R1, Mistral
NeMo, Phi-4

REFACTORINGMINER, PYDRILLER,
CK, CoRED

Refactoring types 103
Discussion Yes
Results Yes
Scripts Yes
Datasets Yes

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

46 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

study differs from Pantiuchina et al’s [60] approach in study design and goals. While [60] relied on
keyword lookup and the RMT tool for PR analysis, we propose a novel methodology employing
Language Model analysis, and therefore following the latest research trends on refactoring analysis.
Moreover, while [60] focused on product quality and developer-related metrics, our study prioritizes
established product and process metrics. Lastly, while the goal was to correlate product quality
and developer metrics with refactoring in PRs, we aim to comprehensively analyze motivations for
refactoring across various contexts and define a catalogue of motivations supported by a broader
selection of metrics from established guidelines.

7 CONCLUSION

Our study investigated the motivations behind performing code refactoring employing LLMs in
version-control history data associated with the refactoring, compared their output with human
rationale, and with the referenced prior study [79]. Moreover, we studied the extent to which
product and process metrics can describe such RMs by analyzing their feature importance and
correlation levels. Our results reveal that while LLMs agree with human judgment in most cases,
they often diverge in deeper, architectural reasoning, favouring local, surface-level cues over
systemic design intent. Still, LLMs demonstrate value in extending and clarifying RMs, surfacing
implicit knowledge that is often under-documented.

We further showed that most LLM-derived RMs are pragmatic, driven by clarity and simplification,
rather than architectural ideals. Using SMs to depict developer experience and code readability
proved informative but insufficient as standalone signals, reinforcing the need for hybrid solutions.

Future research should focus on developing context-aware, LLM-guided refactoring recommen-
dation systems that integrate both behavioural signals, such as RMs, and project-level insights.
Similarly, future work should exploit the potential of further exploring prompting techniques, e.g.,
using multi-turn prompts, system-level metadata, or dependency graphs as prompt context, to
provide LLMs with a more holistic context level. We believe such studies would provide LLMs
with a more holistic analysis of the context involving the refactoring operation. LLMs can enhance
traceability, documentation, and onboarding when paired with system context and developer in-
teraction data. For researchers, this opens a space to explore enriched prompting, system-aware
modeling, and empirical evaluation of hybrid systems. For practitioners, LLMs offer an opportunity
to make the “why” behind code changes visible, fostering better collaboration and maintainability.
LLMs do not just replicate developer intent; they can help understand, explain, and extend it. The
next challenge is building tools that channel this capability with precision, context, and reliability.

DECLARATIONS

Author Contributions: We specify our contributions according to the CRediT taxonomy:

e Mikel Robredo: Writing — Original Draft Preparation, Data Curation, Software. Mikel provided
essential data preparation, developed the implementation of the study, contributed to drafting specific
sections for the writing of the registered report, and contributed significantly to writing the manuscript.

e Matteo Esposito: Methodology, Writing — Original Draft Preparation. Matteo developed the primary
research methodology and contributed significantly to writing the initial manuscript draft and registered
report.

e Fabio Palomba Methodology, Validation, Writing — Review & Editing, Supervision. Fabio critically
validated the study’s results, supervised the research’s methodological approach, and reviewed the
manuscript for academic rigor.

o Rafael Pefaloza: Formal Analysis, Supervision. Rafael performed a thorough formal analysis of data
and statistical techniques and guided the research through supervision.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 47

e Valentina Lenarduzzi: Conceptualization, Methodology, Supervision, Validation, Writing — Review &
Editing. Valentina led the conceptualization and methodological framing of the research, supervised
the entire project, validated findings, and contributed to reviewing and refining the manuscript.

Equal Author Contribution: Mikel Robredo and Matteo Esposito contributed equally to this work.
Conflict of Interest: We declare that we have no competing interests.

Data Availability Statement: We provide our raw data and analysis results in our replication package hosted
on Zenodo.?

Ethical Approval: Our work did not need ethical approval.

Funding: This work has been funded by FAST, the Finnish Software Engineering Doctoral Research Network,
funded by the Ministry of Education and Culture, Finland.

REFERENCES

[1] Marah I Abdin, Jyoti Aneja, Harkirat S. Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael Harrison,
Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li, Weishung Liu, Caio
C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel
Ward, Yue Wu, Dingli Yu, Cyril Zhang, and Yi Zhang. 2024. Phi-4 Technical Report. CoRR abs/2412.08905 (2024).
https://doi.org/10.48550/ARXIV.2412.08905 arXiv:2412.08905

[2] Kamal Acharya, Alvaro Velasquez, and Houbing Herbert Song. 2024. A Survey on Symbolic Knowledge Distillation of
Large Language Models. IEEE Trans. Artif. Intell. 5, 12 (2024), 5928-5948. https://doi.org/10.1109/TAI.2024.3428519

[3] Pouria Alikhanifard and Nikolaos Tsantalis. 2025. A Novel Refactoring and Semantic Aware Abstract Syntax Tree
Differencing Tool and a Benchmark for Evaluating the Accuracy of Diff Tools. ACM Transactions on Software Engineering
and Methodology 34, 2, Article 40 (Jan. 2025), 63 pages. https://doi.org/10.1145/3696002

[4] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. Can refactoring be self-affirmed?: an
exploratory study on how developers document their refactoring activities in commit messages. In Proceedings of the
3rd International Workshop on Refactoring, IWOR@ICSE 2019, Montreal, QC, Canada, May 28, 2019, Nikolaos Tsantalis,
Yuanfang Cai, and Serge Demeyer (Eds.). IEEE / ACM, 51-58. https://doi.org/10.1109/IWOR.2019.00017

[5] Theodore W Anderson and Donald A Darling. 1952. Asymptotic theory of certain" goodness of fit" criteria based on
stochastic processes. The annals of mathematical statistics (1952), 193-212.

[6] Mauricio Aniche. 2015. Java code metrics calculator (CK). Available in https://github.com/mauricioaniche/ck/.

Paris Avgeriou, Davide Taibi, Apostolos Ampatzoglou, Francesca Arcelli Fontana, Terese Besker, Alexander Chatzi-

georgiou, Valentina Lenarduzzi, Antonio Martini, Athanasia Moschou, Ilaria Pigazzini, Nyyti Saarimaki, Darius Sas,

Saulo S. de Toledo, and Angeliki-Agathi Tsintzira. 2021. An Overview and Comparison of Technical Debt Measurement

Tools. IEEE Softw. 38, 3 (2021), 61-71. https://doi.org/10.1109/MS.2020.3024958

Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and Fabio Palomba. 2015. An experimental

investigation on the innate relationship between quality and refactoring. J. Syst. Softw. 107 (2015), 1-14. https:

//doi.org/10.1016/].JSS.2015.05.024

[9] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to

multiple testing. Journal of the Royal statistical society: series B (Methodological) 57, 1 (1995), 289-300.

Patrick Billingsley. 2013. Convergence of probability measures. John Wiley & Sons.

Albert H Bowker. 1948. A test for symmetry in contingency tables. Journal of the american statistical association 43,

244 (1948), 572-574.

[12] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (2001), 5-32. https://doi.org/10.1023/A:1010933404324

[13] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. 1984. Classification and regression trees Regression

trees.

—
~
—

—
[o)
[t

[10
[11

—

[14
[15

—

George Casella and Roger Berger. 2024. Statistical inference. CRC press.

Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016,
Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (Eds.). ACM,
785-794. https://doi.org/10.1145/2939672.2939785

[16] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016,
Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (Eds.). ACM,
785-794. https://doi.org/10.1145/2939672.2939785

—

8https://doi.org/10.5281/zenodo.15209154

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://doi.org/10.48550/ARXIV.2412.08905
https://arxiv.org/abs/2412.08905
https://doi.org/10.1109/TAI.2024.3428519
https://doi.org/10.1145/3696002
https://doi.org/10.1109/IWOR.2019.00017
https://doi.org/10.1109/MS.2020.3024958
https://doi.org/10.1016/J.JSS.2015.05.024
https://doi.org/10.1016/J.JSS.2015.05.024
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.5281/zenodo.15209154

48

[17]
[18]

[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]
[33]
[34]

[35]

[36]

[37]

[38]

Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational and psychological measurement 20, 1
(1960), 37-46.

Cyril Dalmasso, Philippe Broet, and Thierry Moreau. 2005. A simple procedure for estimating the false discovery rate.
Bioinformatics 21, 5 (2005), 660—668.

CP Dancey. 2007. Statistics without maths for psychology. Prentice Hall.

Joshua Davis, Liesbet Van Bulck, Brigitte N Durieux, and Charlotta Lindvall. 2024. The Temperature Feature of ChatGPT:
Modifying Creativity for Clinical Research. JMIR Hum Factors 11 (8 Mar 2024), €53559. https://doi.org/10.2196/53559
Kayla Depalma, Izabel Miminoshvili, Chiara Henselder, Kate Moss, and Eman Abdullah AlOmar. 2024. Exploring
ChatGPT’s code refactoring capabilities: An empirical study. Expert Syst. Appl. 249 (2024), 123602. https://doi.org/10.1
016/]. ESWA.2024.123602

Olive Jean Dunn. 1964. Multiple comparisons using rank sums. Technometrics 6, 3 (1964), 241-252.

Matteo Esposito and Davide Falessi. 2023. Uncovering the Hidden Risks: The Importance of Predicting Bugginess in
Untouched Methods. In 23rd IEEE International Working Conference on Source Code Analysis and Manipulation, SCAM
2023, Bogota, Colombia, October 2-3, 2023, Leon Moonen, Christian D. Newman, and Alessandra Gorla (Eds.). IEEE,
277-282. https://doi.org/10.1109/SCAM59687.2023.00039

Matteo Esposito, Xiaozhou Li, Sergio Moreschini, Noman Ahmad, Tomas Cerny, Karthik Vaidhyanathan, Valentina
Lenarduzzi, and Davide Taibi. 2025. Generative Al for Software Architecture. Applications, Trends, Challenges, and
Future Directions. CoRR abs/2503.13310 (2025). https://doi.org/10.48550/ARXIV.2503.13310 arXiv:2503.13310
Matteo Esposito, Francesco Palagiano, Valentina Lenarduzzi, and Davide Taibi. 2024. Beyond Words: On Large
Language Models Actionability in Mission-Critical Risk Analysis. In Proceedings of the 18th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM 2024, Barcelona, Spain, October 24-25, 2024,
Xavier Franch, Maya Daneva, Silverio Martinez-Fernandez, and Luigi Quaranta (Eds.). ACM, 517-527. https://doi.org/
10.1145/3674805.3695401

Matteo Esposito, Francesco Palagiano, Valentina Lenarduzzi, and Davide Taibi. 2025. On Large Language Models
in Mission-Critical IT Governance: Are We Ready Yet?. In 47th IEEE/ACM International Conference on Software
Engineering: Software Engineering in Practice, SEIP@ICSE 2025, Ottawa, ON, Canada, April 27 - May 3, 2025. IEEE,
504-515. https://doi.org/10.1109/ICSE-SEIP66354.2025.00050

Matteo Esposito, Mikel Robredo, Murali Sridharan, Guilherme Horta Travassos, Rafael Pefialoza, and Valentina
Lenarduzzi. 2025. A Call for Critically Rethinking and Reforming Data Analysis in Empirical Software Engineering.
CoRR abs/2501.12728 (2025). https://doi.org/10.48550/ARXIV.2501.12728 arXiv:2501.12728

Davide Falessi, Simone Mesiano Laureani, Jonida Carka, Matteo Esposito, and Daniel Alencar da Costa. 2023. Enhancing
the defectiveness prediction of methods and classes via JIT. Empir. Softw. Eng. 28, 2 (2023), 37. https://doi.org/10.1007/
510664-022-10261-Z

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M. Zhang. 2023.
Large Language Models for Software Engineering: Survey and Open Problems. In IEEE/ACM International Conference
on Software Engineering: Future of Software Engineering, ICSE-FoSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE,
31-53. https://doi.org/10.1109/ICSE-FOSE59343.2023.00008

Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters. Psychological bulletin 76, 5 (1971), 378.
Martin Fowler. 1999. Refactoring - Improving the Design of Existing Code. Addison-Wesley. http://martinfowler.com/b
ooks/refactoring.html

Jun Gao, Yun Peng, and Xiaoxue Ren. 2025. \texttt{ReMind}: Understanding Deductive Code Reasoning in LLMs. CoRR
abs/2511.00488 (2025). https://doi.org/10.48550/ARXIV.2511.00488 arXiv:2511.00488

Hong Han, Xiaoling Guo, and Hua Yu. 2016. Variable selection using mean decrease accuracy and mean decrease gini
based on random forest. In International conference on software engineering and service science (icsess). IEEE, 219-224.
Sture Holm. 1979. A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics (1979),
65-70.

James Ivers, Anwar Ghammam, Khouloud Gaaloul, Ipek Ozkaya, Marouane Kessentini, and Wajdi Aljedaani. 2024.
Mind the Gap: The Disconnect Between Refactoring Criteria Used in Industry and Refactoring Recommendation Tools.
In IEEE International Conference on Software Maintenance and Evolution, ICSME 2024, Flagstaff, AZ, USA, October 6-11,
2024. IEEE, 138-150. https://doi.org/10.1109/ICSME58944.2024.00023

Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus, Anand Sinha, and Naoyasu Ubayashi.
2013. A Large-Scale Empirical Study of Just-in-Time Quality Assurance. IEEE Trans. Software Eng. 39, 6 (2013), 757-773.
https://doi.org/10.1109/TSE.2012.70

Dae-Kyoo Kim. 2025. Comparative analysis of design pattern implementation validity in LLM-based code refactoring.
J. Syst. Softw. 230 (2025), 112519. https://doi.org/10.1016/].JSS.2025.112519

Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A field study of refactoring challenges and
benefits. In 20th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-20), SIGSOFT/FSE’12,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://doi.org/10.2196/53559
https://doi.org/10.1016/J.ESWA.2024.123602
https://doi.org/10.1016/J.ESWA.2024.123602
https://doi.org/10.1109/SCAM59687.2023.00039
https://doi.org/10.48550/ARXIV.2503.13310
https://arxiv.org/abs/2503.13310
https://doi.org/10.1145/3674805.3695401
https://doi.org/10.1145/3674805.3695401
https://doi.org/10.1109/ICSE-SEIP66354.2025.00050
https://doi.org/10.48550/ARXIV.2501.12728
https://arxiv.org/abs/2501.12728
https://doi.org/10.1007/S10664-022-10261-Z
https://doi.org/10.1007/S10664-022-10261-Z
https://doi.org/10.1109/ICSE-FOSE59343.2023.00008
http://martinfowler.com/books/refactoring.html
http://martinfowler.com/books/refactoring.html
https://doi.org/10.48550/ARXIV.2511.00488
https://arxiv.org/abs/2511.00488
https://doi.org/10.1109/ICSME58944.2024.00023
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1016/J.JSS.2025.112519

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 49

Cary, NC, USA - November 11 - 16, 2012, Will Tracz, Martin P. Robillard, and Tevfik Bultan (Eds.). ACM, 50. https:
//doi.org/10.1145/2393596.2393655

[39] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large Language Models
are Zero-Shot Reasoners. In Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper
/2022/hash/8bb0d291acd4acf06ef112099¢16£326- Abstract-Conference.html

[40] Zarina Kurbatova, Ivan Veselov, Yaroslav Golubev, and Timofey Bryksin. 2020. Recommendation of Move Method
Refactoring Using Path-Based Representation of Code. In ICSE °20: 42nd International Conference on Software Engineering,
Workshops, Seoul, Republic of Korea, 27 June - 19 July, 2020. ACM, 315-322. https://doi.org/10.1145/3387940.3392191

[41] Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann-Gaél Guéhéneuc. 2020. Code smells and refactoring: A
tertiary systematic review of challenges and observations. J. Syst. Softw. 167 (2020), 110610. https://doi.org/10.1016/]J.
JSS.2020.110610

[42] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement for categorical data. Biometrics
(1977), 159-174.

[43] Valentina Lenarduzzi, Terese Besker, Davide Taibi, Antonio Martini, and Francesca Arcelli Fontana. 2021. A systematic
literature review on Technical Debt prioritization: Strategies, processes, factors, and tools. J. Syst. Softw. 171 (2021),
110827. https://doi.org/10.1016/].JSS.2020.110827

[44] Valentina Lenarduzzi, Fabiano Pecorelli, Nyyti Saariméki, Savanna Lujan, and Fabio Palomba. 2023. A critical
comparison on six static analysis tools: Detection, agreement, and precision. . Syst. Softw. 198 (2023), 111575.
https://doi.org/10.1016/J.JSS.2022.111575

[45] Bo Liu, Yanjie Jiang, Yuxia Zhang, Nan Niu, Guangjie Li, and Hui Liu. 2025. Exploring the potential of general
purpose LLMs in automated software refactoring: an empirical study. Autom. Softw. Eng. 32, 1 (2025), 26. https:
//doi.org/10.1007/S10515-025-00500-0

[46] Quinn McNemar. 1947. Note on the sampling error of the difference between correlated proportions or percentages.
Psychometrika 12, 2 (1947), 153-157.

[47] Richard Meyes, Melanie Lu, Constantin Waubert de Puiseau, and Tobias Meisen. 2019. Ablation Studies in Artificial
Neural Networks. CoRR abs/1901.08644 (2019). arXiv:1901.08644 http://arxiv.org/abs/1901.08644

[48] Alessandro Midolo and Emiliano Tramontana. 2025. Refactoring Loops in the Era of LLMs: A Comprehensive Study.
Future Internet 17,9 (2025). https://doi.org/10.3390/£117090418

[49] Prabhaker Mishra, Chandra M Pandey, Uttam Singh, Anshul Gupta, Chinmoy Sahu, and Amit Keshri. 2019. Descriptive
statistics and normality tests for statistical data. Annals of cardiac anaesthesia 22, 1 (2019), 67-72.

[50] Mistral Al team Mistral Al 2023. Mistral 7B. https://mistral.ai/news/announcing-mistral-7b

[51] Mistral AI team Mistral AL 2024. Mistral Nemo. https://mistral.ai/news/mistral-nemo

[52] I C. Mogotsi. 2010. Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze: Introduction to information
retrieval - Cambridge University Press, Cambridge, England, 2008, 482 pp, ISBN: 978-0-521-86571-5. Inf. Retr. 13, 2
(2010), 192-195. https://doi.org/10.1007/S10791-009-9115-Y

[53] Alexey Natekin and Alois C. Knoll. 2013. Gradient boosting machines, a tutorial. Frontiers Neurorobotics 7 (2013), 21.
https://doi.org/10.3389/FNBOT.2013.00021

[54] Kristin K. Nicodemus. 2011. Letter to the Editor: On the stability and ranking of predictors from random forest variable
importance measures. Briefings Bioinform. 12, 4 (2011), 369-373. https://doi.org/10.1093/BIB/BBR016

[55] Ally S. Nyamawe, Hui Liu, Zhendong Niu, Wentao Wang, and Nan Niu. 2018. Recommending Refactoring Solutions
Based on Traceability and Code Metrics. IEEE Access 6 (2018), 49460-49475. https://doi.org/10.1109/ACCESS.2018.28
68990

[56] OpenAl 2025. openai — pypi.org. https://pypi.org/project/openai/. [Accessed 28-04-2025].

[57] Matheus Paixdo, Jens Krinke, DongGyun Han, and Mark Harman. 2018. CROP: linking code reviews to source code
changes. In Proceedings of the 15th International Conference on Mining Software Repositories, MSR 2018, Gothenburg,
Sweden, May 28-29, 2018, Andy Zaidman, Yasutaka Kamei, and Emily Hill (Eds.). ACM, 46-49. https://doi.org/10.1145/
3196398.3196466

[58] Matheus Paixdo, Anderson G. Uchda, Ana Carla Bibiano, Daniel Oliveira, Alessandro Garcia, Jens Krinke, and Emilio
Arvonio. 2020. Behind the Intents: An In-depth Empirical Study on Software Refactoring in Modern Code Review. In MSR
°20: 17th International Conference on Mining Software Repositories, Seoul, Republic of Korea, 29-30 June, 2020, Sunghun Kim,
Georgios Gousios, Sarah Nadi, and Joseph Hejderup (Eds.). ACM, 125-136. https://doi.org/10.1145/3379597.3387475

[59] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. An exploratory study on the relationship
between changes and refactoring. In Proceedings of the 25th International Conference on Program Comprehension, ICPC
2017, Buenos Aires, Argentina, May 22-23, 2017, Giuseppe Scanniello, David Lo, and Alexander Serebrenik (Eds.). IEEE
Computer Society, 176-185. https://doi.org/10.1109/ICPC.2017.38

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1145/2393596.2393655
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.1145/3387940.3392191
https://doi.org/10.1016/J.JSS.2020.110610
https://doi.org/10.1016/J.JSS.2020.110610
https://doi.org/10.1016/J.JSS.2020.110827
https://doi.org/10.1016/J.JSS.2022.111575
https://doi.org/10.1007/S10515-025-00500-0
https://doi.org/10.1007/S10515-025-00500-0
https://arxiv.org/abs/1901.08644
http://arxiv.org/abs/1901.08644
https://doi.org/10.3390/fi17090418
https://mistral.ai/news/announcing-mistral-7b
https://mistral.ai/news/mistral-nemo
https://doi.org/10.1007/S10791-009-9115-Y
https://doi.org/10.3389/FNBOT.2013.00021
https://doi.org/10.1093/BIB/BBR016
https://doi.org/10.1109/ACCESS.2018.2868990
https://doi.org/10.1109/ACCESS.2018.2868990
https://pypi.org/project/openai/
https://doi.org/10.1145/3196398.3196466
https://doi.org/10.1145/3196398.3196466
https://doi.org/10.1145/3379597.3387475
https://doi.org/10.1109/ICPC.2017.38

50

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73
[74

[lami bt

[75]

[76]

[77]

[78]

[79]

Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Jevgenija Pantiuchina, Fiorella Zampetti, Simone Scalabrino, Valentina Piantadosi, Rocco Oliveto, Gabriele Bavota, and
Massimiliano Di Penta. 2020. Why Developers Refactor Source Code: A Mining-based Study. ACM Trans. Softw. Eng.
Methodol. 29, 4 (2020), 29:1-29:30. https://doi.org/10.1145/3408302

L. Pascarella, F. Palomba, and A. Bacchelli. 2018. Re-evaluating method-level bug prediction. In International Conference
on Software Analysis, Evolution and Reengineering (SANER). 592-601.

Anthony Peruma, Steven Simmons, Eman Abdullah AlOmar, Christian D. Newman, Mohamed Wiem Mkaouer, and
Ali Ouni. 2022. How do i refactor this? An empirical study on refactoring trends and topics in Stack Overflow. Empir.
Softw. Eng. 27,1 (2022), 11. https://doi.org/10.1007/S10664-021-10045-X

Dorin Pomian, Abhiram Bellur, Malinda Dilhara, Zarina Kurbatova, Egor Bogomolov, Andrey Sokolov, Timofey Bryksin,
and Danny Dig. 2024. EM-Assist: Safe Automated ExtractMethod Refactoring with LLMs. In Companion Proceedings of
the 32nd ACM International Conference on the Foundations of Software Engineering, FSE 2024, Porto de Galinhas, Brazil,
July 15-19, 2024, Marcelo d’Amorim (Ed.). ACM, 582-586. https://doi.org/10.1145/3663529.3663803

Farhad Pourpanah, Moloud Abdar, Yuxuan Luo, Xinlei Zhou, Ran Wang, Chee Peng Lim, Xi-Zhao Wang, and
Q. M. Jonathan Wu. 2023. A Review of Generalized Zero-Shot Learning Methods. IEEE Trans. Pattern Anal. Mach.
Intell. 45, 4 (2023), 4051-4070. https://doi.org/10.1109/TPAMI.2022.3191696

Foyzur Rahman and Premkumar T. Devanbu. 2013. How, and why, process metrics are better. In 35th International
Conference on Software Engineering, ICSE °13, San Francisco, CA, USA, May 18-26, 2013, David Notkin, Betty H. C. Cheng,
and Klaus Pohl (Eds.). IEEE Computer Society, 432-441. https://doi.org/10.1109/ICSE.2013.6606589

Mohammad Masudur Rahman and Chanchal K. Roy. 2014. An insight into the pull requests of GitHub. In 11th Working
Conference on Mining Software Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014, Hyderabad, India, Premkumar T.
Devanbu, Sung Kim, and Martin Pinzger (Eds.). ACM, 364-367. https://doi.org/10.1145/2597073.2597121

Gopi Krishnan Rajbahadur, Shaowei Wang, Gustavo Ansaldi Oliva, Yasutaka Kamei, and Ahmed E. Hassan. 2022. The
Impact of Feature Importance Methods on the Interpretation of Defect Classifiers. IEEE Trans. Software Eng. 48, 7
(2022), 2245-2261. https://doi.org/10.1109/TSE.2021.3056941

Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi. 2024. Analyzing the
Ripple Effects of Refactoring. A Registered Report. This Registered Report has been accepted at ICSME (2024).

Mikel Robredo, Nyyti Saarimaki, Matteo Esposito, Davide Taibi, Rafael Pefialoza, and Valentina Lenarduzzi. 2025.
Evaluating time-dependent methods and seasonal effects in code technical debt prediction. 7. Syst. Softw. 230 (2025),
112545. https://doi.org/10.1016/].JSS.2025.112545

Nyyti Saarimaki, Sergio Moreschini, Francesco Lomio, Rafael Pefialoza, and Valentina Lenarduzzi. 2022. Towards
a Robust Approach to Analyze Time-Dependent Data in Software Engineering. In IEEE International Conference
on Software Analysis, Evolution and Reengineering, SANER 2022, Honolulu, HI, USA, March 15-18, 2022. IEEE, 36-40.
https://doi.org/10.1109/SANER53432.2022.00015

Nyyti Saariméki, Mikel Robredo, Valentina Lenarduzzi, Sira Vegas, Natalia Juristo, and Davide Taibi. 2025. Does
microservice adoption impact the velocity? A cohort study. Empir. Softw. Eng. 30, 5 (2025), 130. https://doi.org/10.100
7/510664-025-10673-7

Claude Sammut and Geoffrey 1. Webb (Eds.). 2017. Encyclopedia of Machine Learning and Data Mining. Springer.
https://doi.org/10.1007/978-1-4899-7687-1

Margarete Sandelowski. 1995. Sample size in qualitative research. Research in nursing & health 18, 2 (1995), 179-183.
Simone Scalabrino, Mario Linares-Vasquez, Rocco Oliveto, and Denys Poshyvanyk. 2018. A comprehensive model for
code readability. . Softw. Evol. Process. 30, 6 (2018). https://doi.org/10.1002/SMR.1958

Agnia Sergeyuk, Yaroslav Golubev, Timofey Bryksin, and Iftekhar Ahmed. 2025. Using Al-based coding assistants in
practice: State of affairs, perceptions, and ways forward. Inf. Softw. Technol. 178 (2025), 107610. https://doi.org/10.101
6/JINFSOF.2024.107610

Samuel Sanford Shapiro and Martin B Wilk. 1965. An analysis of variance test for normality (complete samples).
Biometrika 52, 3/4 (1965), 591-611.

Atsushi Shirafuji, Yusuke Oda, Jun Suzuki, Makoto Morishita, and Yutaka Watanobe. 2023. Refactoring Programs
Using Large Language Models with Few-Shot Examples. In 30th Asia-Pacific Software Engineering Conference, APSEC
2023, Seoul, Republic of Korea, December 4-7, 2023. IEEE, 151-160. https://doi.org/10.1109/APSEC60848.2023.00025
Danilo Silva, Jodo Paulo da Silva, Gustavo Jansen de Souza Santos, Ricardo Terra, and Marco Tilio Valente. 2021.
RefDiff 2.0: A Multi-Language Refactoring Detection Tool. IEEE Trans. Software Eng. 47, 12 (2021), 2786-2802.
https://doi.org/10.1109/TSE.2020.2968072

Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why we refactor? confessions of GitHub contributors.
In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2016,
Seattle, WA, USA, November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su (Eds.). ACM,
858-870. https://doi.org/10.1145/2950290.2950305

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://doi.org/10.1145/3408302
https://doi.org/10.1007/S10664-021-10045-X
https://doi.org/10.1145/3663529.3663803
https://doi.org/10.1109/TPAMI.2022.3191696
https://doi.org/10.1109/ICSE.2013.6606589
https://doi.org/10.1145/2597073.2597121
https://doi.org/10.1109/TSE.2021.3056941
https://doi.org/10.1016/J.JSS.2025.112545
https://doi.org/10.1109/SANER53432.2022.00015
https://doi.org/10.1007/S10664-025-10673-7
https://doi.org/10.1007/S10664-025-10673-7
https://doi.org/10.1007/978-1-4899-7687-1
https://doi.org/10.1002/SMR.1958
https://doi.org/10.1016/J.INFSOF.2024.107610
https://doi.org/10.1016/J.INFSOF.2024.107610
https://doi.org/10.1109/APSEC60848.2023.00025
https://doi.org/10.1109/TSE.2020.2968072
https://doi.org/10.1145/2950290.2950305

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 51

[80] Minjun Son, Yun-Jae Won, and Sungjin Lee. 2025. Optimizing Large Language Models: A Deep Dive into Effective
Prompt Engineering Techniques. Applied Sciences 15, 3 (2025). https://doi.org/10.3390/app15031430

[81] Charles Spearman. 1961. The proof and measurement of association between two things. The American Journal of
Psychology (1961).

[82] M. A. Stephens. 1974. EDF Statistics for Goodness of Fit and Some Comparisons. J. Amer. Statist. Assoc. 69, 347 (1974),
730-737.

[83] Tom Stuart. 2015. Understanding computation - from simple machines to impossible programs. O’Reilly. http:
/[www.oreilly.de/catalog/9781449329273/index.html

[84] Gabor Szoke, Gabor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimoéthy. 2014. Bulk Fixing Coding Issues and Its
Effects on Software Quality: Is It Worth Refactoring?. In 14th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2014, Victoria, BC, Canada, September 28-29, 2014. IEEE Computer Society, 95-104.
https://doi.org/10.1109/SCAM.2014.18

[85] Géabor Szoke, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimoéthy. 2014. A Case Study of Refactoring Large-Scale Industrial
Systems to Efficiently Improve Source Code Quality. In Computational Science and Its Applications - ICCSA 2014 - 14th
International Conference, Guimaraes, Portugal, June 30 - July 3, 2014, Proceedings, Part V (Lecture Notes in Computer
Science), Beniamino Murgante, Sanjay Misra, Ana Maria A. C. Rocha, Carmelo Maria Torre, Jorge Gustavo Rocha,
Maria Irene Falcdo, David Taniar, Bernady O. Apduhan, and Osvaldo Gervasi (Eds.), Vol. 8583. Springer, 524-540.
https://doi.org/10.1007/978-3-319-09156-3_37

[86] Nikolaos Tsantalis, Victor Guana, Eleni Stroulia, and Abram Hindle. 2013. A multidimensional empirical study on
refactoring activity. In Center for Advanced Studies on Collaborative Research, CASCON ’13, Toronto, ON, Canada,
November 18-20, 2013, James R. Cordy, Krzystof Czarnecki, and Sang-Ah Han (Eds.). IBM / ACM, 132-146. http:
//dl.acm.org/citation.cfm?id=2555539

[87] Dimitrios Tsoukalas, Nikolaos Mittas, Alexander Chatzigeorgiou, Dionisis D. Kehagias, Apostolos Ampatzoglou,
Theodoros Amanatidis, and Lefteris Angelis. 2022. Machine Learning for Technical Debt Identification. IEEE Trans.
Software Eng. 48, 12 (2022), 4892-4906. https://doi.org/10.1109/TSE.2021.3129355

[88] Jeffrey S Vitter. 1985. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS) 11, 1
(1985), 37-57.

[89] Yi Wang. 2009. What motivate software engineers to refactor source code? evidences from professional developers. In
25th IEEE International Conference on Software Maintenance (ICSM 2009), September 20-26, 2009, Edmonton, Alberta,
Canada. IEEE Computer Society, 413-416. https://doi.org/10.1109/ICSM.2009.5306290

[90] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and
Denny Zhou. 2022. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. In Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho,
and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4- Abstract-
Conference.html

[91] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics bulletin 1, 6 (1945), 80-83.

[92] Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjérn Regnell, and Anders Wesslén. 2012. Experimentation
in Software Engineering. Springer. https://doi.org/10.1007/978-3-642-29044-2

[93] S Paul Wright. 1992. Adjusted p-values for simultaneous inference. Biometrics (1992), 1005-1013.

[94] Yue Yu, Huaimin Wang, Gang Yin, and Charles X. Ling. 2014. Reviewer Recommender of Pull-Requests in GitHub. In
30th IEEE International Conference on Software Maintenance and Evolution, Victoria, BC, Canada, September 29 - October
3, 2014. IEEE Computer Society, 609-612. https://doi.org/10.1109/ICSME.2014.107

[95] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recommendation for pull-requests in GitHub: What
can we learn from code review and bug assignment? Inf. Softw. Technol. 74 (2016), 204-218. https://doi.org/10.1016/].
INFSOF.2016.01.004

[96] Quanjun Zhang, Chunrong Fang, Yang Xie, Yaxin Zhang, Yun Yang, Weisong Sun, Shengcheng Yu, and Zhenyu
Chen. 2023. A Survey on Large Language Models for Software Engineering. CoRR abs/2312.15223 (2023). https:
//doi.org/10.48550/ARXIV.2312.15223 arXiv:2312.15223

[97] Zejun Zhang, Zhenchang Xing, Xiaoxue Ren, Qinghua Lu, and Xiwei Xu. 2024. Refactoring to Pythonic Idioms:
A Hybrid Knowledge-Driven Approach Leveraging Large Language Models. Proc. ACM Softw. Eng. 1, FSE (2024),
1107-1128. https://doi.org/10.1145/3643776

[98] Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tiangi Shi, Chenyang Lyu, Longyue Wang, Weihua Luo, and Kaifu

Zhang. 2024. Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions. CoRR abs/2411.14405 (2024).

https://doi.org/10.48550/ARXIV.2411.14405 arXiv:2411.14405

Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu, Yanjun Lyu, Peng

Shu, Xiaowei Yu, Chao Cao, Hangi Jiang, Hanxu Chen, Yiwei Li, Junhao Chen, Huawen Hu, Yihen Liu, Huaqin Zhao,

—_ =

[99

—

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://doi.org/10.3390/app15031430
http://www.oreilly.de/catalog/9781449329273/index.html
http://www.oreilly.de/catalog/9781449329273/index.html
https://doi.org/10.1109/SCAM.2014.18
https://doi.org/10.1007/978-3-319-09156-3_37
http://dl.acm.org/citation.cfm?id=2555539
http://dl.acm.org/citation.cfm?id=2555539
https://doi.org/10.1109/TSE.2021.3129355
https://doi.org/10.1109/ICSM.2009.5306290
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1109/ICSME.2014.107
https://doi.org/10.1016/J.INFSOF.2016.01.004
https://doi.org/10.1016/J.INFSOF.2016.01.004
https://doi.org/10.48550/ARXIV.2312.15223
https://doi.org/10.48550/ARXIV.2312.15223
https://arxiv.org/abs/2312.15223
https://doi.org/10.1145/3643776
https://doi.org/10.48550/ARXIV.2411.14405
https://arxiv.org/abs/2411.14405

52 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Shaochen Xu, Haixing Dai, Lin Zhao, Ruidong Zhang, Wei Zhao, Zhenyuan Yang, Jingyuan Chen, Peilong Wang, Wei
Ruan, Hui Wang, Huan Zhao, Jing Zhang, Yiming Ren, Shihuan Qin, Tong Chen, Jiaxi Li, Arif Hassan Zidan, Afrar
Jahin, Minheng Chen, Sichen Xia, Jason Holmes, Yan Zhuang, Jiaqi Wang, Bochen Xu, Weiran Xia, Jichao Yu, Kaibo
Tang, Yaxuan Yang, Bolun Sun, Tao Yang, Guoyu Lu, Xianqiao Wang, Lilong Chai, He Li, Jin Lu, Lichao Sun, Xin
Zhang, Bao Ge, Xintao Hu, Lian Zhang, Hua Zhou, Lu Zhang, Shu Zhang, Ninghao Liu, Bei Jiang, Linglong Kong,
Zhen Xiang, Yudan Ren, Jun Liu, Xi Jiang, Yu Bao, Wei Zhang, Xiang Li, Gang Li, Wei Liu, Dinggang Shen, Andrea
Sikora, Xiaoming Zhai, Dajiang Zhu, and Tianming Liu. 2024. Evaluation of OpenAlI o1: Opportunities and Challenges
of AGI. CoRR abs/2409.18486 (2024). https://doi‘org/10.48550/ARXIV.2409.18486 arXiv:2409.18486

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://doi.org/10.48550/ARXIV.2409.18486
https://arxiv.org/abs/2409.18486

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 53

APPENDIX

In this appendix, we describe additional content to help the reader better understand the insights
of the descriptions provided in the main text of this study.

A SUPPLEMENTARY MATERIAL FOR THE DATA COLLECTION
A.1 Expanded description on the refactoring collection using RMT

RMT remains the state-of-the-art refactoring mining tool as it has a refactoring detection accuracy
close to 100%, ° which overcomes the capabilities of other existing tools such as RerD1FF [78]). RMT
can detect 103 refactoring types through the analysis of how the Abstract Syntax Tree of a Java
class/method has changed concerning one of the previous commits. Table 2 shows the categorization
of the 103 refactorings of our study according to their types as defined by Fowler [31]. Out of
the RTs that can be detected, only a subset of the detected RTs is classified in the original Fowler
catalogue. Nonetheless, the RMT can also identify types that cannot be mapped to the original
catalogue, such as the composite refactoring Move and Inline Method.

We conducted the mining process with RMT on a workstation equipped with an Intel Core
19-13900KF CPU (24 cores, 32 threads), 64GB of RAM, and 7.27TB of disk storage. Similarly, we
configured RMT to use a maximum share of RAM of 57GB, allowing other processes to continue
running smoothly. Leveraging the custom options RMT offers, we launched the tool for each project
to report the refactoring activity as a JSON file comprising each of the analyzed commits, the set
of applied refactoring operations, as well as the classes/methods subject to them. Yet, projects
liferay/liferay-plugins, checkstyle/checkstyle, deeplearning4j/deeplearning4j, and jOOQ/jOOQ resulted
in exceeding heap-space error, which we could not resolve given our available computational
resources. In addition, projects jersey/jersey, crate/crate, JetBrains/MPS, siacs/Conversations, kuujo/-
copycat, bitfireAT/davroid resulted in untraceable stalled processes. Consequently, after a prolonged
period of multiple attempts, we opted to proceed without the mentioned projects. The discarded
projects accounted for a total of 13 refactoring commits present in the reference study. However,
since we could collect the SMs related to affected refactoring commits, and the replication package
from the reference study provided the affected RT, we still considered the affected commits, and
therefore their ground-truth refactoring motivations, in the study. We acknowledge the impact of
this decision as a threat to validity in Section 5.

A.2 Expanded description on the conducted sampling strategy

Phase 1: Initially, we aimed to achieve enough representativeness for each of the mined projects
and all the RTs with the drawn sample. For such a goal, we decided on setting a data structure
to record the sampled refactoring observations, until all the projects had a minimum total of 3
refactorings. Likewise, all the refactoring types had a minimum representation of the same number
of refactorings on a global level.

Phase 2: The previous phase did not reach the full representativeness of the mined 114 projects,
as some projects did not detect refactorings from the RTs left to be sampled. Therefore, we expanded
the sampling logic implemented in the previous phase and identified which projects remained
under-sampled. We adopted the reservoir sampling technique to randomly pick the remaining
refactorings [88] to fill the under-sampled projects. Given that we knew the total number n of
refactorings for each of the projects remaining unrepresented, and we also knew the k amount
of sampled refactoring needed in each of the projects, reservoir sampling ensured that every

%https://github.com/tsantalis/RefactoringMiner

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://github.com/tsantalis/RefactoringMiner

54 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

refactoring observation within the set of mined refactorings per project had the same probability
of being included on the set or reservoir of refactorings still pending to be sampled per project.

Phase 3: Phases I and II resulted in a randomly chosen, yet balanced sample of 342 refactoring
observations. Therefore, to ensure the target sample size to provide statistically significant results
from the data analysis, we pooled all the mined refactorings together and performed pure random
sampling with the remaining 43 refactoring observations.

B SUPPLEMENTARY MATERIAL FOR THE DATA ANALYSIS
B.1 Selected LLM models

To balance performance and efficiency, we selected high-performing distilled LLMs [2]. Model
distillation refers to the process of transferring knowledge from an LLM to a smaller one, aiming to
preserve performance while reducing model complexity and computational cost (see Section 5). It
is a complex task to know which model configuration leads to the most efficient answers when
performing prompt engineering [80]. For this reason, we fixed the model temperature at 0.8, which
provides a balance between creativity and coherence [20].

e Marco-o1 [98]: A 7.6B parameter distilled version of OpenAI’s o-1 model [99], fine-tuned on
curated CoT datasets. It uses Monte Carlo Tree Search (MCTS) and softmax-based scoring
to explore reasoning paths, and shows strong performance across math, coding, and logic
tasks.!” The model configuration when performing the prompting included a context length
of 4096 tokens.

e Mistral NeMo [51]: A 12B model distilled from Mistral 7B [50], optimized for multi-turn
reasoning, code generation, and instruction following. It benefits from alignment fine-tuning
and supports 128K token inputs.'!

e DeepSeek R1: A 14B distilled model from the DeepSeek-V3-Base series, trained with CoT
examples and refined via human feedback and reinforcement learning. It matches o-1-level
performance on reasoning benchmarks.'? Given the bigger size of DeepSeek R1, we configured
the context length of this model to be double the one from the previously adopted distilled
models, i.e., 8129 tokens.

e Microsoft Phi-4 [1]: A 14B model with a 16K token context window, trained on high-quality
academic and technical data. It consistently outperforms larger models like GPT-40 in formal
reasoning tasks.!* As with DeepSeek R1, given that the size of Phi-4 was the same, we
configured the context length limit to be the same, fixed at 8129 tokens.

To run the selected models locally, we used LM Studio, a desktop application designed for
experimenting with LLMs in an offline environment.'* LM Studio integrates directly with the
Hugging Face model hub, allowing us to download and launch a variety of models easily.' It
also sets up a local server that mimics the OpenAlI API interface, enabling smooth compatibility
with tools built around OpenAI’s endpoints.!® For interaction and prompt execution, we relied
on the Python openai library developed by OpenAlI [56]. All experiments were conducted on a
high-performance workstation equipped with an NVIDIA GeForce RTX 4090 GPU.

Ohttps://huggingface.co/AIDC- Al/Marco-o01l

Mhttps://huggingface.co/mistralai/Mistral-Nemo-Base-2407 The model configuration when performing the prompting
included a context length of 4096 tokens.

https://deepseek.ai

Bhttps://huggingface.co/microsoft/phi-4

14https://Imstudio.ai

Bhttps://huggingface.co/models

6 https://platform.openai.com/docs/api-reference/introduction

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://huggingface.co/AIDC-AI/Marco-o1
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
https://deepseek.ai
https://huggingface.co/microsoft/phi-4
https://lmstudio.ai
https://huggingface.co/models
https://platform.openai.com/docs/api-reference/introduction

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 55

- The refactoring description is <Refactoring description>

- The commit message is <Refactoring commit message>

- What is the motivation driving the developer to perform this refactoring type?
Describe the reasons to make your choice.

Model Input Model Output
- The performed refactoring type is <Supervised refactoring type> A: The refactoring motivation is <Refactoring motivation>.
The reasons for this choice are <motivation description>.

A: The refactoring motivation is <Supervised refactoring motivation>.
The reason for this choice are <motivation description>.

- The performed refactoring type is <Sampled refactoring type>

- The refactoring description is <Sampled refactoring description>

- The commit message is <Sampled refactoring commit message>

- What is the motivation driving the developer to perform this refactoring type?
Describe the reasons to make your choice.

Fig. 15. Example of Zero-Shot CoT prompt based on Kojima et al. [39].

B.2 On the adopted CoT prompting strategy

CoT prompting, is a method that enhances the ability of LLMs to perform complex reasoning
by eliciting a series of intermediate reasoning steps [90]. CoT involves generating a "chain of
thought", that is, a coherent sequence of natural language reasoning steps that lead to the final
answer for a problem. It enables models to decompose multi-step problems, suggesting how they
arrive at a particular answer. The process mimics a step-by-step thought process, similar to how
humans solve complicated reasoning tasks. There are two primary ways to execute: Few-shot CoT
prompting [90] and Zero-shot CoT prompting [39]. In our work, we adopted the latter since we did
not want to introduce bias in the LLMs’ responses based on the provided sample answers, and the
ground-truth motivations extracted from the reference work did not include the entirety of the
studied RTs. Figure 15 provides an example pseudo-prompt following the Zero-shot CoT prompt
strategy. Based on the required outputs for each of the defined RQs, we fine-tuned system and user
prompt messages correspondingly, and made them available in the replication package (see Data
Availability Statement). The last format of the shared prompt templates, and therefore the prompt
messages used in the study, are the result of a progressive fine-tuning process where the quality
of the LLM responses was discussed among the authors until a unanimous agreement was found.
Thus, the prompt with the user messages we used to feed the LRM was structured as follows:

Structured JSON response. The expected model output consisted of a structured JSON response
containing: (i) a brief answer/label with the requested answer, (ii) a concise answer description,
and (iii) the underlying reasoning process involved in building the answer. This process was
modified for each task prompting stage, correspondingly, based on each RQ. We instructed the
LLMs to present their response in the defined JSON output. For that, we leveraged OpenAI’s REST
API' to enforce the prompted model to process the response output in JSON format.

B.3 On the conducted Open-Coding.

Since we already had the validated RMs, this time we tasked models V1, V2, and V3 to perform open-
coding on the 385 RMs. Each model received the detected RM, a description of the RM (generated
by the best-performing model from a previous task), and an initially empty list of categories (called
the pooled list) that could grow during the process. It is important to note that, following the
design of an open-coding process, the pool of motivation categories would start empty and greedily
increase as more refactoring motivation observations are processed by the validation assistant
models.

7https://platform.openai.com/docs/guides/structured-outputs

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

https://platform.openai.com/docs/guides/structured-outputs

56 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Each model was instructed to assign a clear motivation category (RMC) to the RM and explain
why. The models were encouraged to reuse existing categories when possible, but they could also
introduce new ones if needed. After V1 and V2 completed their coding, V3 reviewed the same RM
and the two proposed categories. V3 then chose the final category based on three options:

(1) If V1 and V2 agreed, V3 accepted that shared category.
(2) If they disagreed, V3 picked one of the two based on their explanations.
(3) If neither fit well, V3 could suggest a new category, with justification.

Likewise, given the absence of existing refactoring motivation categories and to respect the
nature of an open-coding task, we followed the zero-shot CoT learning strategy. Each of the models
was instructed to consider the already existing categories provided in the user message. Yet, they
were allowed to suggest a new motivation category if the existing categories in the list above did
not fit the nature of the concerning motivation.

Finally, the human experts focused on a statistically representative sample (95% confidence level,
5% margin of error) [73]. The experts also repeated the open-coding process on the ground-truth
dataset[79] to compare and uncover additional developer motivations.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 57

C LIST OF ABBREVIATIONS FROM THE DETECTED REFACTORING TYPES.

Table C.1. List of abbreviations for the Refactoring Types analyzed in the study.

Refactoring Type Abbr. Refactoring Type Abbr. Refactoring Type Abbr.

Extract Variable EV Change Attribute Access CAAM Remove Attribute Anno- RAA
Modifier tation

Change Parameter Type CPT Extract And Move EAMM Add Thrown Exception ATET
Method Type

Rename Parameter RenP Remove Attribute Modi- RAM Encapsulate Attribute EnA
fier

Extract Method EM Change Return Type CRT Add Variable Modifier AVM

Change Variable Type CVT Extract Interface EI Move And Inline Method ~MAIM

Add Parameter AP Rename Variable RV Inline Method M

Add Class Annotation ACA Modify Parameter Anno- MPA Reorder Parameter RParam
tation

Remove Method Annota- RMA Modify Attribute Anno- MAA Inline Attribute 1A

tion tation

Rename Attribute RA Add Attribute Annota- AAA Rename Class RC
tion

Add Parameter Annota- APA Parameterize Variable PV Parameterize Attribute PA

tion

Inline Variable v Modify Method Annota- MMA Localize Parameter Lp
tion

Merge Parameter MParam | Remove Class Annota- RCA Remove Parameter An- RPA
tion notation

Merge Attribute MerA Change Class Access CCAM Remove Variable Anno- RVA
Modifier tation

Add Method Annotation ~AMA Change Method Access CMAM Change Thrown Excep- CTET
Modifier tion Type

Move Method MM Add Class Modifier ACM Pull Up Method PUM

Move Attribute MA Replace Loop With RLWP Move Source Folder MSF
Pipeline

Add Attribute Modifier ~AAM Move Class MovC Extract Superclass ESup

Extract Class EC Modify Class Annota- MCA Replace Attribute With RAWV
tion Variable

Replace Generic With Di- RGWD Merge Conditional MCon Merge Class MerC

amond

Invert Condition IC Add Method Modifier AMM Move And Rename Class MARM

Replace Variable With RVWA Replace Anonymous RAWL Remove Variable Modi- RVM

Attribute With Lambda fier

Rename Method RM Remove Thrown Excep- RTET Move Package MP
tion Type

Move And Rename At- MARA Remove Class Modifier =~ RCM Rename Package RPack

tribute

Remove Parameter RemP Remove Method Modi- RMM Split Parameter SP

fier

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

58 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi
Refactoring Type Abbr. Refactoring Type Abbr. Refactoring Type Abbr.
Extract Attribute ExA Move And Rename MARM Split Attribute SA

Method
Change Attribute Type =~ CAT Move Code MCode Pull Up Attribute PUA
Push Down Method PDM Split Method SM Merge Variable MV
Split Package SP Split Conditional sC Replace Attribute RA
Merge Package MPack Split Variable SV Replace Anonymous RAWC
With Class
Merge Method MerM Split Class SClass Replace Pipeline With RPWL
Loop
Change Type Declara- CTDK Replace Conditional RCWT Try With Resources TWR
tion Kind With Ternary
Remove Parameter Mod- RPM Push Down Attribute PDA Assert Throws AT
ifier
Add Parameter Modifier ~APM Add Variable Annotation =~ AVA Merge Catch MCat
Collapse Hierarchy CH Extract Subclass ESub Modify Variable Annota- MVA
tion
Parameterize Test PT

(Abbr.: Abbreviation)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects 59

D LIST OF REFACTORING MOTIVATION CATEGORIES PER MOTIVATION FAMILY, ALONG WITH THEIR
DUPLICATE FREQUENCIES.

Table D.1. List of unique motivation categories and their respective frequencies grouped into the defined

RMCs.

Motivation Category

Unique motivations (# Occurrences)

Code Clarity and Read-
ability

Enhance (2) / Improve (2) Code Clarity (11) and Simplification (12) / and Maintainability (2)
/ and Abstraction (11), Improve Readability (3) / Data Structure Semantics (2), Enhance (12) /
Improve (1) Code Readability and Maintainability (10), Enhance (3) Code Readability (1) and
Consistency (4) / and Simplification (1) / by Isolating Logic (1), Enhance (3) Code Organization (6)
and Promote Reusability (1), Annotation Update for Deprecation (2), Package Organization
Alignment (3), Ensure Correctness and Consistency (2), Clarify Nullability Semantics (3)
/ Class Purpose (1), Enhance Readability (6) and Maintainability (11), Improve Clarity by
Isolating Complex Expressions (1), Enhance Code Conciseness and Readability (1)

Maintainability and

Modularity

Enhance Modularity (1) / and Reusability (14) / Code Flexibility and Maintainability (1) / Code
Modularity (1), Promote Reuse (3), Improve Code Organization (1), Increase Flexibility (7), Improve
Code Quality (1) Improvement (1), Centralize Shared Behavior (1), Reorganize Code Structure (2),
Leverage Existing Implementation (1)

Encapsulation and Ab-
straction

Increase (1) / Improve (1) / Enhance (2) Encapsulation Breach (1) / Enhancement (15), At-
tribute Coupling Reduction (1), Encapsulate Attribute (1), Reduce Global State and Enhance
Encapsulation (1) / Class Coupling and Enhance Encapsulation (1)

Testing and Reliability

Reusability of Test Methods (2), Enhance Test Organization (2), Test Isolation Improve-
ment (2), Reduce Coupling and Enhance Testability (2), Enable Test Flexibility (3) / Test
Execution (1), Move Method to Facilitate Test Setup (1), Enhance Test Reliability (1), Adopt
Modern Testing Framework (2), Eliminate Unnecessary Variables (3)

Code Simplification and
Redundancy Reduction

Reduce Redundancy (9), Simplify Code (4) by Reducing Complexity (4) / Structure (1) / by
Removing Unnecessary Annotations (1) / by Removing Unnecessary Elements (1) / Simplify Code
by Reducing Redundancy (1), Eliminate Redundant Code (1), Remove Unnecessary Code
Elements (4) / Redundant Parameters (1), Redundant Annotation (1) / Unnecessary Variable (1),
Simplify Parameter Handling by Reducing Argument Count (1), Reduce Code Dupli-
cation (7) and Enhance Flexibility (1), Simplify Constructor Logic (1), Reduce Complexity
(16) by Removing Unnecessary Code Segments (2) / by Eliminating Unnecessary Abstractions (1),
Eliminate Misleading or Unnecessary Information (1), Simplify Constant Management
(1), Eliminate Redundancy (2), Reduce Duplication (1) / Local Complexity (1), Simplify
Parameter Handling (4), Simplify Suppression Warnings by Reducing the Number of
Types Targeted (1), Simplify Dependency Management (1), Reduce Code Duplication and
Enhance Flexibility (1), Simplify Class Structure (2), Remove Unnecessary Checked Excep-
tion (1), Reduce Dependencies and Simplify State Management (1), Eliminate Unnecessary
Suppression (2) / Variables (2) / Restrictions (1)

Exception and Error
Handling

Correctness (1), Change Thrown Exception Type (1), Assert Exception Handling (1), Im-
prove Error Handling (4), Clarify Exception Semantics (1), Ensure Correctness of Method
Overrides (2), Remove Unnecessary Checked Exception (1), Ensure Correctness of Excep-
tion Handling (1), Improve Exception Handling Specificity (1)

Type and Parameter
Handling

Type Safety Enhancement (7), Change Parameter Type (2), Clarify Parameter Semantics (1) /
Exception Semantics (1), Improve type specificity (1), Enhance Parameter Clarity and Specificity

Q)

Structural Reorganiza-
tion

Move Class (1) / Feature Module (1), Split Package (1), Rename and Reclassification (1),
Consolidate (1), Package Structure Optimization (1) / Consolidation (1), Move and Rename
Attribute (1), Extract Interface (1), Simplify Hierarchy (1), Improve Specificity in Class
Responsibilities (1)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

60

Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

Motivation Category

Unique motivations (# Occurrences)

Performance and Re-
source Management

Performance Optimization (1), Facilitate Thread Management (1), Enhance Memory Manage-
ment (2) / Logging and Integration (1), Resource Management Optimization (2), Performance
Enhancement (1)

Consistency and Stan-
dardization

Consistency and Metric Accuracy (1), Annotation Update for Deprecation (3), Improve
Consistency (1), Ensure Correctness (3), Replace Custom Abstractions with Standard
Methods (1), Address Annotation Warnings (1)

Design Principles and
Patterns

Enforce Design Patterns (1), Apply SRP (1), Refactor for Code Compatibility (1), Enhance
Interface Abstraction (1), Improve Internal Cohesion (1)

Security and Safety

Ensure Null Safety (1) / Thread Safety (1), Security and Consistency (1), Code Safety and
Reliability (9), Change Method Access Level (2), Improve Type Safety (1)

Support (New) Function-
alities

Enhance (3) / Consolidate (2) Functionality, Enhance Invocation Logic (1), Enhance Ro-
bustness (3), Support New Feature (1), Enhance Access Control (1), Introduce Necessary
Structures for New Functionality (1)

Other Specialized Goals

Instance-specific Behavior Enhancement (1), Serialization Compatibility (3), Move Method
(1), Collapse Hierarchy (1), Merge Attribute (1), Leverage Standard Library (1), Suppress
Specific Compiler Warning (3), Implement Null Object Pattern (1), Split Variable (1) / Package
(1) / Attribute (1), Update Attribute Value to Accommodate New Requirements or Changes
(1), Add Modifier Correctly (1), Enable Interoperability (1), Update Annotation to Reflect
a Different Attribute or Dependency (1), Centralize Common Functionality (1)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

What Were You Thinking? An LLM-Driven Large-Scale Study of Refactoring Motivations in Open-Source Projects

E GLOSSARY WITH THE LIST OF ACRONYMS USED WITHIN THE STUDY

Table E.1. Glossary of the global acronyms used across the study, along with their definition.

Acronym Concept definition Acronym Concept definition
AD Anderson-Darling test 0SS Open Source Software
BH Benjamini-Hochberg test PR Pull Request
CA Correlation Analysis R Recall (Only in Table 10)
CLI Command-Line Interface RAG Retrieval-Augmented Generation
CoT Chain of Thought RF Random Forest
DT Dunn’s all pairs test RM Refactoring Motivation
ELOC Effective Lines of Code RMC Refactoring Motivation Category
FDR False Discovery Rate RMT Refactoring Miner Tool
FI Feature Importance RQ Research Question
FNR False Negative Rate RT Refactoring Type
FWER Family-Wise Error Rate RW Related Works
GT Ground Truth SE Software Engineering
IG Information Gain SM Software Metric
IRA Inter-Rater Agreement SW Shapiro-Wilk test
LLM Large Language Model \%! First Validation Model
LRM Large Reasoning Model V2 Second Validation Model
MCTS Monte Carlo Tree Search V3 Third Validation Model
MDA Mean Decrease in Accuracy VCH Version Control History
MDG Mean Decrease in Gini WT Wilcoxon signed-rank test
MOSHO Multi-Objective Spotted Hyena Optimizer XGB Extreme Gradient Boost
OOP Object Oriented Programming

61

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

62 Mikel Robredo, Matteo Esposito, Fabio Palomba, Rafael Pefialoza, and Valentina Lenarduzzi

F ANALYZING THE IMPACT OF ROOT-CANAL AND FLOSS REFACTORINGS

When it comes to refactoring motivation, an important goal underlying the refactoring activity relates to root-canal, i.e.
refactorings related to quality-driven improvements, as well as floss refactorings, which consist on task-driven motivations
to support other tasks, for instance, bug fixing commits. To address this, we revisited the entire collection of commits with
detected refactoring activity which we obtained from mining the study context projects with the REFACTORINGMINER tool.
Subsequently, we performed regular expression matching through the entire collection of commits with refactoring activity.
Accordingly, we identified bug fix commits employing regular expressions to check the presence of IDs in the versioning
system change log, e.g., “fixed issue #ID” or “issue ID” [28, 68]. Based on the structure of the tickets commonly used in
well-known issue tracking systems such as GitHub or Jira, we used the following regular expressions:

o Issue ticket pattern for Jira: Matches issue tickets commonly used in Jira, where a project identifier is followed by

the issue number:

[A-Z1{2,}-\d+

e Issue ticket pattern for GitHub: Matches issue tickets commonly used in GitHub where the issue ticket number is
preceded by a # symbol:

#\d+

We acknowledge this approach to be the best effort, but it might not capture the totality of the bug-fixing commits
given the existing heterogeneity when referencing issue tickets in commit messages. Building upon this newly mined
data, we computed the distribution of refactoring commits detected as issue-fixing commits as they matched the defined
patterns. We performed this process with the entire collection of refactoring commits, and did similarly with the commits
used in the analyzed sample. Among all commits containing refactorings detected by RefactoringMiner, 54% were labelled
as issue-fixing commits, while the remaining 46% could be considered as commits related with the introduction of new
features. Results differed when we concentrated on the manually validated sample of 385 commits, with 28% of the analyzed
commits being labelled as bug-fixing commits, thus leaving the remaining 72% of refactoring commits related to other tasks
in spite of handling software bugs. These observational results suggest that our mined refactoring data, and therefore the
spectrum of the motivations identified with our LLMs addresses both root-canal and floss goals of refactoring activity.

G ANALYZING THE EXTENT OF SELF-ADMITTED REFACTORING ACTIVITY WITHIN OUR MINED
REFACTORING DATA

Prior research has demonstrated self-admitted refactoring to be a significant indicator of refactoring activity localization
when investigating the context involving refactoring operations as well as the refactoring motivations declared within
the natural language text stored in commit messages [4]. Consequently, we revisited the entire collection of commits with
detected refactoring activity which we obtained from mining the study context projects with the RefactoringMiner tool.
Subsequently, we performed regular expression matching through the entire collection of commits with refactoring activity.
For that, we identified commits with self-admitted refactoring by employing regular expressions to check the presence
of the keyword “refactor*”. Building upon this newly mined data, we computed the distribution of refactoring commits
detected as self-admitted refactoring commits as they matched the defined pattern. We performed this process with the
entire collection of refactoring commits, and did similarly with the commits used in the analyzed sample. Among all commits
containing refactorings detected by RefactoringMiner, only 4% of the commits with refactoring activity were labelled as
self-admitted refactoring commits, while the remaining 96% of the commits did not show recognizable regular expression
pattern. With respect to the analyzed sample of refactoring operations, the share of commits labelled as admitted refactoring
commits ascended to a 12% of the observations, while the remaining 88% did not match with the defined regular expression.
Although our regular-expression approach provides only an approximation based on the implemented best effort, the
obtained results show that although it represents a minority of the mined and analyzed case, self-admitted refactoring
operations exist in the analyzed data. Likewise, while we used developers’ commit messages as context variant to feed
the LLMs for identifying refactoring motivations, the present results suggest that most real-world refactoring operations
require understanding further context rather than merely relying on commit messages, as these might not capture the
entire goal of the performed commit.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: February 2026.

	Abstract
	1 Introduction
	2 Study Design
	2.1 Goal and Research Questions
	2.2 Study Context
	2.3 Data Collection
	2.4 Data Analysis

	3 Results
	3.1 Evaluating the capability of LLMs to extract developers' RMs (RQ1)
	3.2 Refactoring Motivations: Alignment With Previous Studies (RQ2)
	3.3 Refactoring Motivations: Extensions of Previous Studies (RQ3)
	3.4 Software Metrics reflecting Refactoring Motivations (RQ4)

	4 Discussion
	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References
	A Supplementary material for the data collection
	A.1 Expanded description on the refactoring collection using RMT
	A.2 Expanded description on the conducted sampling strategy

	B Supplementary material for the data analysis
	B.1 Selected LLM models
	B.2 On the adopted CoT prompting strategy
	B.3 On the conducted Open-Coding.

	C List of Abbreviations from the detected Refactoring Types.
	D List of Refactoring Motivation Categories per motivation family, along with their duplicate frequencies.
	E Glossary with the list of acronyms used within the study
	F Analyzing the impact of root-canal and floss refactorings
	G Analyzing the extent of self-admitted refactoring activity within our mined refactoring data

