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Abstract

Software systems are becoming the core of the business of several industrial com-

panies and, for this reason, they are getting bigger and more complex. Further-

more, they are subject of frantic modifications every day with regard to the imple-

mentation of new features or for bug fixing activities. In this context, often devel-

opers have not the possibility to design and implement ideal solutions, leading to

the introduction of technical debt, i.e., “not quite right code which we postpone

making it right”.

One noticeable symptom of technical debt is represented by the bad code smells,

which were defined by Fowler to indicate sub-optimal design choices applied in

the source code by developers. In the recent past, several studies have demon-

strated the negative impact of code smells on the maintainability of the source

code, as well as on the ability of developers to comprehend a software system.

This is the reason why several automatic techniques and tools aimed at discover-

ing portions of code affected by design flaws have been devised. Most of them

rely on the analysis of the structural properties (e.g., method calls) mined from the

source code.

Despite the effort spent by the research community in recent years, there are

still limitations that threat the industrial applicability of tools for detecting code

smells. Specifically, there is a lack of evicence regarding (i) the circustamces lead-

ing to code smell introduction, (ii) the real impact of code smells on maintain-

ability, since previous studies focused the attention on a limited number of soft-

ware projects. Moreover, existing code smell detectors might be inadeguate for

the detection of many code smells defined in literature. For instance, a number
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of code smells are intrinsically characterized by how code elements change over

time, rather than by structural properties extractable from the source code.

In the context of this thesis we face these specific challenges, by proposing a

number of large-scale empirical investigations aimed at understanding (i) when

and why smells are actually introduced, (ii) what is their longevity and the way

developers remove them in practice, (iii) what is the impact of code smells on

change- and fault-proneness, and (iv) how developers perceive code smells. At

the same time, we devise two novel approaches for code smell detection that rely

on alternative sources of information, i.e., historical and textual, and we evaluate

and compare their ability in detecting code smells with respect to other existing

baseline approaches solely relying structural analysis.

The findings reported in this thesis somehow contradicts common expecta-

tions. In the first place, we demonstrate that code smells are usually introduced

during the first commit on the repository involving a source file, and therefore

they are not the result of frequent modifications during the history of source code.

More importantly, almost 80% of the smells survive during the evolution, and

the number of refactoring operations performed on them is dramatically low. Of

these, only a small percentage actually removed a code smell. At the same time,

we also found that code smells have a negative impact on maintainability, and in

particular on both change- and fault-proneness of classes. In the second place, we

demonstrate that developers can correctly perceive only a subset of code smells

characterized by long or complex code, while the perception of other smells de-

pend on the intensity with which they manifest themselves.

Furthermore, we also demonstrate the usefulness of historical and textual anal-

ysis as a way to improve existing detectors using orthogonal informations. The

usage of these alternative sources of information help developers in correctly di-

agnose design problems and, therefore, they should be actively exploited in future

research in the field.

Finally, we provide a set of open issues that need to be addressed by the re-

search community in the future, as well as an overview of further future applica-

tions of code smells in other software engineering field.
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PART 1

INTRODUCTION AND BACKGROUND
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Chapter 1

Problem Statement

1.1 Context and Motivation

The success of every industrial company depends on a number of factors. Some

of them are related to the way current business is managed, some others on how

the future business is created. In the digital age, innovation is one of the key fac-

tors contributing to the success of any company and, in this scenario, information

systems have a prominent role.

Software systems drastically changed the lives of both individuals and com-

plex organizations through the definition of ever more sophisticated ways to create

business and involve clients. Social networking, digital communication and cloud

computing are just few examples of the new opportunities which came through

the wave of information technology.

As a direct consequence, software systems are getting always bigger, complex

and difficult to manage. Simultaneously, with the high diffusion of laptops and

smartphones there is a growing need for software that meet also performance,

reliability, and maintainability requirements, other than costs [1]. The result is

that not only the development of software systems is more complex than before,

but more importantly perfective and corrective maintenance operations need to be

performend according to strict scheduling and deadlines. Indeed, it is no accident

that maintenance costs are up to 100 times higher than development costs [2].
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1.1. Context and Motivation

In a typical scenario, the source code of a software system experience several

daily changes to be adapted to new contexts or to be fixed with regard to urgent

bugs [3]. Due to unavoidable time constraints, software developers do not always

have the time to design and implement correct solutions and, indeed, often the

activities are performed in a rush, leading to the application of undisciplined im-

plementation choices that have the effect to erode the original design of the system,

possibly introducing what Cunningham defined as technical debt [4], i.e., immature

design solutions applied with the aim of meeting a deadline.

This phenomenon is widely known as software aging [5]. Previous research

measured software aging exploiting change entropy [6, 7], while others focused

the attention on the so-called bad code smells, recurring poor design or implemen-

tation choices applied as a consequence of software aging or because the source

code of a system is not well-designed from the beginning [8].

For instance, a Long Method represents a method that implements a main func-

tionality together with auxiliary functions that should be managed in different

methods. Such methods can rapidly grow out of control, making it harder and

harder for developers to understand them, to fix bugs or to add new features [8].

Together with long or complex classes (e.g., Blob), poorly modularized code (e.g.,

Promiscuous Package), or long Message Chains used to develop a given feature,

they are just few examples of code smells that can possibly negatively affect a soft-

ware system [8].

In the last decade, code smells have attracted the attention of several researchers,

interested in understanding the intrinsic characteristics of source code affected by

design flaws as well as the effect of the presence of code smells on maintainabil-

ity. Specifically, a plethora of empirical studies have investigated the relevance

of code smells from the developers’ perspective [9, 10, 11], their evolution and

longevity [12, 13, 14, 15], and their side effects, such as the increase of change-

and fault-proneness [16, 17], the decrease of program comprehensibility [18] and

maintainability [9, 19, 10].

All these studies motivated the research community in investing effort for the

definition of techniques able to automatically detect code smells in the source code,
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with the aim of supporting developers in the identification of the portions of the

source code more likely to be affected by design problems.

Indeed, several code smell detectors have been devised. Most of them pro-

posed to detect code smells by (i) identifying key symptoms that characterize par-

ticular bad smells using a set of thresholds based on the measurement of struc-

tural metrics (e.g., if Lines Of Code > k); (ii) conflating the identified symptoms,

leading to the final rule for detecting the smells [20, 21, 22, 23, 24, 25, 26]. These

detection techniques mainly differ in the set of used structural metrics, which de-

pend on the type of code smells to detect, and how the identified key symptoms are

combined. For example, such a combination can be performed using AND/OR

operators [21, 26, 22], Bayesian belief networks [23], and B-Splines [24].

An alternative way to find code smells is to look for portions of code that

need to be refactored. As an example, Tsantalis et al. devised JDeodorant [25],

a tool able to detect instances of the Feature Envy smell by analyzing the struc-

tural dependencies of classes in order to suggest where to apply operations of

Move Method refactorings. Following a similar phylosophy, Bavota et al. [27, 28]

proposed approaches for recommending refactoring operations exploiting graph-

theory [27, 29], game theory [28], and relational topic modeling [30, 31].

Finally, the usage of other methodologies such as search algorithms [32, 33, 34,

35] or machine learning [36, 37], as well as the definition of context-based detection

techniques [38, 39] represent a recent trend in the field.

1.2 Research Statement

Even though the effort devoted by the research community in characterizing code

smells through the conduction of empirical studies and devising approaches for

their detection exhibiting good detection performances, in the context of our re-

search we highlighted some aspects that might be improved, summarizable as

follow:

1. Previous research is mainly based on common wisdom rather than guided
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by the state-of-the-practice. Indeed, the smell detectors proposed in liter-

ature do not consider the circumstances that could have caused the smell

introduction, thus providing a detection only based on structural properties

characterizing the current version of a system. The misalignment between

theory and practice can cause an additional problem: smells detectable by

using current approaches might be far from what developers actually per-

ceive as design flaws, thereby leading developers to not refactor smells [40].

In our opinion, to better support developers in planning actions to improve

source code quality, it is imperative to have a contextualized understanding

of the circumstances under which particular smells occur.

2. Small-scale empirical investigations threat the generalizability of previ-

ous findings. Most of the empirical studies assessing the impact of code

smells on non-functional attributes of source code have been carried out on

a small set of software systems. Thus, it is unclear the magnitude of such

effects and whether previous findings can be generalizable. For instance,

several studies investigated the effects of smells on the fault-proneness of

classes. Besides Khomh et al. [17], also D’Ambros et al. [41], Li and Shatnawi

[42], Olbrich et al. [43], and Gatrell and Counsell [44] found relationships

between the presence of design flaws and faults. However, all these studies

analyzed at most seven systems, that can have specific characteristics and,

therefore, might be not representative.

3. The proposed techniques still might not be adequate for detecting many

of the smells described in literature. In particular, while there are smells

where the use of structural analysis is suitable (e.g., the Complex Class smell,

a class having a high cyclomatic complexity), there are also several other de-

sign flaws not characterized by structurally visible problems. For example,

a Divergent Change occurs when a class is changed in different ways for dif-

ferent reasons [8]. In this case, the smell is intrinsically characterized by how

source code changes over time and, therefore, the use of historical informa-

tion may help in its identification. At the same time, existing approaches do
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not take into account the vocabulary of the source code, that can be more

effective in the identification of poorly cohesive or more complex classes, as

already pointed out in previous research related to other software engineer-

ing tasks [45, 46]. For instance, a Long Method might be effectively identified

by analyzing the textual scattering in the source code of a method.

The work presented in this thesis has the goal to overcome the limitations men-

tioned above, by performing large-scale empirical investigations and defining new

code smell detectors complementary to the ones previously proposed. Specifically,

the high-level research questions considered in this thesis are the following:

• RQ1: When and why code smells are actually introduced by developers?

• RQ2: Are previous findings on the relationship between code smells and maintain-

ability generalizable?

• RQ3: Are code smells actually perceived by developers as actual design problems?

• RQ4: How do approaches based on alternative sources of information, such as the

historical and the textual one, perform in detecting code smells?

• RQ5: Are code smells detectable using alternative sources of information closer to

developers’ perception of design problems?

The final goal is to provide developers with more usable detectors, able to (i)

accurately detect design flaws taking into account the way smells are generally

introduced in the source code, and (ii) propose recommendations that are closer to

the developers perspective.

1.3 Research Contribution

This thesis provides several contributions aimed at answering the research ques-

tions formulated in the previous Section. Basically, the contribution of our work

can be divided in two main groups. Table 1.1 reports, for each group, the list of

aspects treated and the references to papers published or submitted. Specifically:
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Table 1.1: Summary of the Thesis Contribution

Field Aspect Ref.

Empirical Studies

Circumstances behind Smell Introduction [47]

Code Smell Survivability and Causes of their Removal [47]

Impact of Code Smells on Source Code Maintainability [48]

Relationships Between Code Smells and Refactoring [49]

Developers’ Perception of Code Smells [50]

Novel Approaches
Using Change History Information for Detecting Code Smells [51, 52]

Using Information Retrieval Techniques for Detecting Code Smells [53, 54]

Developers’ Perception of Historical Smells [52]

Developers’ Evolution and Perception of Textual Smells [54]

1. Empirical Studies on Code Smells. This category of studies aims at answer-

ing the first three research questions:

• To answer RQ1, we conducted a mining software repository study aimed

at understanding how code smells are introduced in practice. The study

refers to publication [47], and focused the attention of when developers

introduce code smells and under which circumstances they apply mod-

ifications having the effect to introduce smells.

• To answer RQ2, the contributions are related to publications [47], [48],

and [49]. In particular, we conducted (i) an investigation aimed at un-

derstanding the lifespan of code smells and the likely causes behind

their removal, and (ii) a mining study investigating the impact of code

smells on source code change- and fault-proneness, and (iii) an experi-

mental investigation into the relationship between code smells and refac-

toring operations performed by developers.

• To answer RQ3, we performed a qualitative study with developers,

where we collected their opinions in order to investigate whether de-

velopers perceive code smells as actual design flaws. This contribution

is presented in publication [50].

The findings achieved from this group of empirical studies (i) shed lights on
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the actual practices followed by developers when introducting and removing

code smells, (ii) reveal the real impact of design smells on the maintainability

of source code, and (iii) helped in focusing the attention of the contruction of

code smells detectors taking into account the design flaws actually perceived

by developers.

2. Novel Approaches for Code Smell Detection. Based on the results achieved

from the previous empirical studies and having observed that several code

smells cannot easily identified by solely exploiting structural analysis, we an-

swer RQ4 and RQ5 devising two novel approaches for code smell detection

based on the analysis of historical and textual information. In particular:

• We exploited the change history available in software repositories to ex-

tract the fine-grained code changes experienced by a software system.

Then, we applied heuritics based on change frequency or co-change

analysis to detect code smells intrinsically characterized by how code

changes over time. Moreover, we conducted an empirical evaluations

aimed at measuring the performances of the approach when compared

to existing structural-based techniques. This contribution refers to pub-

lications [51] and [52].

• Secondly, we employed our historical detector in a second empirical

study aimed at verifying whether developers are able to perceive his-

torical smells easier than structural ones. The contribution is presented

in publication [52].

• We defined a code smell detector based on Information Retrieval tech-

niques [55] to detect code smells characterized by promiscuous respon-

sabilities (e.g., Blob). The technique has been evaluated in terms of its

accuracy in detecting code smells when compared with state-of-the-art

structural detectors. Publication [53] discusses this contribution.

• In the second place, we conducted a software repository mining study

aimed at evaluating how developers act differently on textually versus
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structurally detected smell instances. We complemented our analysis by

surveying industrial developers and software quality experts in order to

understand what is the difference in the way they perceive and identify

code smells detected in the two different manners. Publications [53] and

[54] include these contributions.

The output of this piece of research consists of a new set of techniques able to

effectively complement previous code smell detectors defined in literature.

Besides the contributions described above, two further common contributions

were made:

• Large-scale Empirical Studies. All the studies conducted in our research

have been conducted on a large set of software systems, in order to ensure

the generalizabily of the findings.

• Publicly Available Tools and Replication Packages. The construction of

several tools, scripts, and dataset was needed to effectively perform the anal-

yses. We made all of them publicly available by providing tools (publications

[56, 57, 58, 59]) and online replication packages. Moreover, we built a web

application containing an open dataset of manually evaluated code smells,

which is discussed in publication [60].

1.4 Structure of the Thesis

Before describing in depth the single contributions of this thesis, Chapter 2 overviews

the related literature on code smells. The core of the thesis is organized in two

main blocks, one for each group reported in Table 1.1. Each part consists of the

chapters further describing the single contributions provided. Specifically:

Part I groups together the empirical studies aimed at answering the first three

research questions:
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• When and Why Your Code Starts to Smell Bad (and Whether the Smells Go Away).

Chapter 3 discusses the empirical study where we analyzed when and why

code smells are actually introduced in practice, what is their longevity, and

what are the practices used by developers to remove code smells.

• On the Diffuseness and the Impact on Maintainability of Code Smells: A Large

Scale Empirical Investigation. Chapter 4 reports the design and the results of

the experiment aimed at analysis the impact of code smells on change- and

fault-proneness.

• Do They Really Smell Bad? A Study on Developers Perception of Bad Code Smells.

The study on the perception that developers have about code smells is re-

ported in Chapter 5.

• An Experimental Investigation on the Innate Relationship between Quality and

Refactoring. Chapter 6 describes an empirical study where we evaluated

whether software quality (including code smells) drive the application of

refactoring operations.

Part II reports the chapters related to the novel approaches devised:

• Mining Version Histories for Detecting Code Smells. Chapter 7 describes HIST,

the change history-based approach defined to detect five types of code smells

from the catalogue by Fowler [8]. It also reports the study aimed at evaluat-

ing the performances of the novel detector and its comparison with extisting

structural-based detectors.

• The Perception of Historical and Structural Smells. Chapter 8 describes the em-

pirical study aimed at evaluating the perception of historical smells from the

developers’ point of view.

• A Textual-based Approach for Code Smell Detection. TACO, the approach re-

lying on Information Retrieval techniques for detecting five types of smells

from the catalogue by Fowler [8] and Brown et al. [61] is presented in Chapter

11



1.4. Structure of the Thesis

9. The Chapter also discusses the study where we evaluated its accuracy and

compared the performances with existing tools relying on structural analy-

sis.

• The Scent of a Smell: an Extensive Comparison between Textual and Structural

Smells. Chapter 10 discusses of the empirical studies conducted to evaluate

(i) how developers act on textual and structural code smells, and (ii) how

developers perceived design flaws detected with different approaches.

Finally, Chapter 11 concludes the thesis and discusses the future directions and

challenges in code smell research.
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Chapter 2

Related Work

In the past years code smells have been attracted the attention of several researchers,

who were interested in devising automatic approaches for detecting them in the

source code, as well as understanding their nature and their impact on non func-

tional attributes of source code. In this chapter a comprehensive literature review

about (i) methods and tools able to detect code smells in the source code, and

(ii) empirical studies conducted to analyze the evolution and the impact of code

smells on maintainability is reported. Moreover, we also report an overview of the

empirical studies conducted in the closely related field of refactoring.

2.1 Literature Review on Automatic Code Smell De-

tection Techniques

Several techniques have been proposed in the literature to detect code smell in-

stances affecting code components, and all of these take their cue from the sugges-

tions provided by four well-known books: [8, 61, 62, 63]. The first one, by Web-

ster [62] defines common pitfalls in Object Oriented Development, going from the

project management down to the implementation. Riel [63] describes more than

60 guidelines to rate the integrity of a software design. The third one, by Fowler

[8], describes 22 code smells describing for each of them the refactoring actions to

take. Finally, Brown et al. [61] define 40 code antipatterns of different nature (i.e.,
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architectural, managerial, and in source code), together with heuristics to detect

them. Among all the code smells defined in the books mentioned above, only for

a subset of them automatic approaches and tools have been proposed. Specifically,

the research community mainly focused its attention on the smells characterizing

long or complex code, as well as smells shown as harmful from maintainability.

On the other hand, a lower effort has been devoted in most of the smells charac-

terizing problems in the way developers use Object Oriented programming. In

the following, we present the definition of the code smells studied in literature, as

well as the approaches proposed for their identification.

2.1.1 Detecting Complex and Long Code Elements

Complex and long code elements represent a major issue for the maintainability

of a software system, since it threats the ability of developers to comprehend and

modify the source code [18, 16, 17]. Moreover, such smells are generally perceived

as actual problems from developers, as shown later in Chapter 5. For this reason,

the research community devised approaches for automatic detection of a variety

of code smells in the catalogues by Fowler [8] and Brown et al. [61].

The God Class. The God Class (a.k.a., Blob) is a class implementing different re-

sponsibilities, characterized by the presence of a large number of attributes and

methods, which implement different functionalities, and by many dependencies

with data classes (i.e., classes implementing only getter and setter methods) [8]. A

suitable way to remove this smell is characterized by the application of an Extract

Class Refactoring operation aimed at splitting the original class in more cohesive

classes [8].

The problem to identify classes affected by the Blob code smell has been ana-

lyzed under three perspectives. First, researchers focused their attention on the

definition of heuristic-based approaches that exploit several software quality met-

rics (e.g., cohesion [64]). For instance, Travassos et al. [65] defined the “reading

techniques”, a mechanism suggesting manual inspection rules to identify defects

in source code.
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1 RULE_CARD: Blob {

RULE: Blob

3 {ASSOC: associated FROM: mainClass ONE TO: DataClass MANY}

RULE: mainClass

5 {UNION LargeClassLowCohesion ControllerClass}

RULE: LargeClassLowCohesion

7 {UNION LargeClass LowCohesion}

RULE: LargeClass

9 {(METRIC: NMD + NAD, VERY_HIGH, 20)}

RULE: LowCohesion

11 {(METRIC: LCOM5, VERY_HIGH, 20)}

RULE: ControllerClass

13 {UNION (SEMANTIC: METHODNAME, {Process, Control, Command, Manage, Drive, System}),

(SEMANTIC: CLASSNAME, {Process, Control, Command, Manage, Drive, System}}

15 RULE: DataClass

{(STRUCT: METHOD_ACCESSOR, 90)} };

Listing 2.1: Rule Card used by DECOR for detecting Blob instances.

DECOR (DEtection and CORrection of Design Flaws) [20], use a set of rules,

called “rule card”, describing the intrinsic characteristics of a class affected by Blob

(see Listing 2.1). As described in the rule card, DECOR detects a Blob when the

class has an LCOM5 (Lack of Cohesion Of Methods) [64] higher than 20, a number

of methods and attributes higher than 20, a name that contains a suffix in the set

{Process, Control, Command, Manage, Drive, System}, and it has a one-to-many

association with data classes.

Besides DECOR, Marinescu [21] proposed a metric-based mechanism to cap-

ture deviations from good design principles and heuristics, called “detection strate-

gies”. Such strategies are based on the identification of symptoms characterizing a

particular smell and metrics for measuring such symptoms. Then, thresholds on

these metrics are defined in order to define the rules. Lanza and Marinescu [22]

showed how to exploit quality metrics to identify “disharmony patterns” in code

by defining a set of thresholds based on the measurement of the exploited metrics

in real software systems. Their detection strategies are formulated in four steps.

In the first step, the symptoms characterizing a smell are defined. In the second

step, a proper set of metrics measuring these symptoms is identified. Having this

information, the next step is to define thresholds to classify the class as affected (or

not) by the defined symptoms. Finally, AND/OR operators are used to correlate

the symptoms, leading to the final rules for detecting the smells.

The approaches described above classify classes strictly as being clean or anti-
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patterns, while an accurate analysis for the borderline classes is missing [23]. In or-

der to bridge this gap, Khomh et al. [23] proposed an approach based on Bayesian

belief networks providing a likelihood that a code component is affected by a

smell, instead of a boolean value as done by the previous techniques. This is also

one of the main characteristics of the approach based on the quality metrics and

B-splines proposed by Oliveto et al. [24] for identifying instances of Blobs in source

code. Given a set of Blob classes it is possible to derive their signature (represented

by a curve) that synthetize the quality of the class. Specifically, each point of the

curve is the value of a specific quality metrics (e.g., the CK metric suite). Then,

the identification of Blob is simply obtained by comparing the curve (signature) of

a class given in input with the (curves) signatures of the previous identified Blob

instances. The higher the similarity, the higher the likelihood that the new class is

a Blob as well.

Blob classes might be also detected indirectly by looking at the opportunity

to apply an Extract Class Refactoring. For instance, Fokaefs et al. [66] proposed

an approach that takes as input a software system and suggests a set of Extract

Class Refactoring operations. In other words, the tool suggests to split a set of

classes in several classes in order to have a better distribution of the responsibili-

ties. Clearly, the original classes are candidate Blob instances. The approach pro-

posed by Fokaefs et al. [66] formulated the detection of Extract Class Refactoring

operations as a cluster analysis problem, where it is necessary to identify the opti-

mal partitioning of methods in different classes. In particular, for each class they

analyze the structural dependencies between the entities of a class, i.e., attributes

and methods, in order to build, for each entity, the entity set, i.e., the set of meth-

ods using it. The Jaccard distance between all couples of entity sets of the class is

then computed in order to cluster together cohesive groups of entities that can be

extracted as separate classes. The Jaccard distance is computed as follows:

Jaccard(Ei, Ej) = 1� |Ei \ Ej|
|Ei [ Ej|

(2.1)

where Ei and Ej are two entity sets, the numerator is the number of common
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entities between the two sets and the denominator is the total number of unique

entities in the two sets. If the overall quality (in terms of cohesion and coupling)

of the system improves after splitting the class in separate classes, the approach

proposed the splitting as a candidate Extract Class Refactoring operation. In other

words, a Blob has been identified. The approach proposed by Fokaefs et al. [66]

has been implemented as an Eclipse plug-in, called JDeodorant [67].

Similarly to this work, Bavota et al. [27] proposed the use of structural and

conceptual analysis to support the identification of Extract Class Refactoring op-

portunities. In particular, a class of the system under analysis is first parsed to

build a method-by-method matrix, a n⇥ n matrix where n is the number of methods

in the class to be refactored. A generic entry ci,j of the method-by-method matrix rep-

resents the likelihood that method mi and method mj should be in the same class.

This likelihood is computed as a hybrid coupling measure between methods (de-

gree to which they are related) obtained through a weighted average of three struc-

tural and semantic measures, i.e., the Structural Similarity between Methods (SSM)

[68], the Call-based Dependence between Methods (CDM) [69], and the Concep-

tual Similarity between Methods (CSM) [70]. Once the method-by-method matrix

has been constructed, its transitive closure is computed in order to extract chains

of strongly related methods (each chain represents the set of responsibilities, i.e.,

methods, that should be grouped in a new class).

Bavota et al. [28] also devised the use of game theory to find a balance between

class cohesion and coupling when splitting a class with different responsibilities

into several classes. Specifically, the sequence of refactoring operations is com-

puted using a refactoring game, in which the Nash equilibrium [71] defines the

compromise between coupling and cohesion.

Finally, Simon et al. [72] provided a metric-based visualization tool able to

discover design defects representing refactoring opportunities. For example, a

Blob is detected if different sets of cohesive attributes and methods are present

inside a class. In other words, a Blob is identified when there is the possibility to

apply an Extract Class refactoring.
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The Long Method. As defined by Fowler, a Long Method arises when a method

implements a main functionality, together with auxiliary functions that should

be managed in different methods [8]. Generally, this smell has been captured by

considering the size (i.e., lines of code) of a method. Indeed, Moha et al. [20]

identified the smell using a simple heuristic based on the LOC metric. Indeed, if a

method contains more than 100 lines of code, a Long Method is detected. A more

sophisticated approach has been proposed by Tsantalis and Chatzigeorgiou [73]

for detecting Extract Method Refactoring opportunities. Specifically, the technique

employs a block-based slicing technique [74] in order to suggest slice extraction

refactorings which contain the complete computation of a given variable. If it is

possible to extract a slice for a parameter, an Extract Method Refactoring can be

applied. Consequentely, a Long Method is identified.

RULE_CARD: Spaghetti Code {

2 RULE: Spaghetti Code

{{INTER: NoInheritanceClassGlobalVariable LongMethodMethodNoParameter}

4 RULE: LongMethodMethodNoParameter

{INTER LongMethod MethodNoParameter}

6 RULE: LongMethod

{(METRIC: METHOD_LOC, VERY_HIGH, 100)}

8 RULE: MethodNoParameter

{(STRUCT: METHOD_NO_PARAM)}

10 RULE: NoInheritanceClassGlobalVariable

{INTER NoInheritance ClassGlobalVariable}

12 RULE: NoInheritance

{(METRIC: DIT, INF_EQ, 2, 0)}

14 RULE: ClassGlobalVariable

{INTER ClassOneMethod FieldPrivate}

16 RULE: ClassOneMethod

{(STRUCT: ONE_METHOD)}

18 RULE: FieldPrivate

{(STRUCT: PRIVATE_FIELD, 100)};

Listing 2.2: Rule Card used by DECOR for detecting Spaghetti Code instances.

The Spaghetti Code. Classes affected by this smell are characterized by complex

methods with no parameters, interacting between them using instance variables.

It is a symptom of procedural-style programming [61]. The Spaghetti Code smell

describes source code difficult to comprehend by a developer, often without a well

defined structure, defining several long methods without any parameter. From a

lexical point of view, smelly classes have usually procedural names. DECOR [20]

is also able to identify Spaghetti Code, once again by using a specific rule card that

describes the smell through structural properties.
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As the reader can see in Listing 2.2, DECOR classifies the smell using only soft-

ware metrics able to identify the specific characteristic of a class. This is possible

simply because the Spaghetti Code does not involve any relationships with other

classes, but it is a design problem concentrated in a single class having procedural

characteristics. Specifically, in DECOR instances of Spaghetti Code are found look-

ing for classes having at least one long method, namely a method composed by a

large number of LOC and declaring no parameters. At the same time, the class

does not present characteristics of Object Oriented design. For example, the class

does not use the concept of inheritance and should use many global variables.

The Swiss Army Knife. A Swiss Army Knife is a class that exhibits high complex-

ity and offers a large number of different services. This type of smell is slightly

different from a Blob, because in order to address the different responsibilities, it

exposes high complexity while a Blob is a class that monopolizes processing and

data of the system.

In other words, a class affected by the Swiss Army Knife is a class that pro-

vides answer to a large range of needs. Generally, it arises when a class has many

methods with high complexity and the class has a high number of interfaces. For

example, a utility class exposing high complexity and addressing many services

is a good candidate to be a Swiss Army Knife. The characteristics of this design

flaw suggest that structural information can be useful for its detection. In particu-

lar, a mix of software complexity metrics and semantic checks in order to identify

the different services provided by the class could be used for the detection. Once

again, DECOR is able to detect this smell through a rule card [20]. Specifically, it

relies on the Number of Interfaces metric, which is able to identify the number of

services provided by a class. If the metric exceeds a given threshold, a Swiss Army

Knife is detected.

The Type Checking. A Type Checking code smell affects a class that shows compli-

cated conditional statements making the code difficult to understand and main-

tain. One of the most common situation in which a programmer linked to proce-

dural languages can fall down using Object Oriented programming is the misun-
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derstanding or lack of knowledge on how to use OO mechanisms such as poly-

morphism. This problem manifests itself especially when a developer uses con-

ditional statements to dynamically dispatch the behavior of the system instead of

polymorphism.

For its identification, a simple heuristic can be used: when you see long and

intricate conditional statements, then you have found a Type Checking candidate.

Tsantalis et al. [75] proposed a technique to identify and refactor instances of this

smell. In particular, their detection strategy takes into account two different cases:

in the first case, an attribute of a class represents a state and, depending on its

value, different branches of the conditional statements are executed. Thus, if in

the analyzed class, there is more than one condition involving the attribute, a can-

didate of Type Checking is found. In the second case, a conditional statement

involves RunTime Type Identification (RTTI) in order to cast the type of a class in

another to invoke methods on the last one. For example, this is the case of two

classes involved in a hierarchy where the relationship is not exploited by using

polymorphism. In such case, RTTI often arises in the form of an if/else if state-

ment in which there is one conditional expression for each control on the type of

a class. However, if the RTTI involves more than one conditional expression, a

candidate of Type Checking is found.

2.1.2 Detecting Wrong Application of Object Oriented Program-

ming

Even though not immediately visible, wrong application of Object Oriented pro-

gramming can lead to a higher change- and fault-proneness of the source code

[16, 17, 41]. Most of the approaches defined in literature focus their attention on

four particular smell types, i.e., Feature Envy, Refused Bequest, and Functional De-

composition.

The Feature Envy. A method suffers of the Feature Envy code smell if it is more

interested in another class (also named envied class with respect the one it actually

is in). It is often characterized by a large number of dependencies with the envied
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class [8]. Usually, this negatively influences the cohesion and the coupling of the

class in which the method is implemented. In fact, the method suffering of Feature

Envy reduces the cohesion of the class because it likely implements different re-

sponsibilities with respect to those implemented by the other methods of the class

and increases the coupling, due to the many dependencies with methods of the

envied class.

A first simple way to detect this smell in source code is to traverse the Abstract

Syntax Tree (AST) of a software system in order to identify, for each field, the set

of the referencing classes [76]. So, using a threshold it is possible to discriminate

the fields having too many references with other classes. Other more sophisticated

techniques defined in literature are able to identify Move Method Refactoring, i.e.,

operations aimed at removing the Feature Envy smell [25, 30]. In some way, these

approaches can aid the software engineer also in the identification of the Feature

Envy: if the suggestion proposed by the refactoring tool is correct, then an instance

of the Feature Envy smell is present in the source code.

1 extractMoveMethodRefactoringSuggestions(Method m)

T = {}

3 S = entity set of m

for i = 1 to size of S

5 entity = S[i]

T = T U {entity.ownerClass}

7 sort(T)

suggestions = {}

9 for i = 1 to size of T

if(T[i] != m.ownerClass &&

11 modifiesDataStructureInTargetClass(m, T[i]) &&

preconditionsSatisfied(m, T[i]))

13

suggestions = suggestions U

15 {moveMethodSuggestions(m => T[i])}

17 if(suggestions != {})

return suggestions

19 else

for i = 1 to size of T

21 if(T[i] = m.ownerClass)

return {}

23 else if preconditionsSatisfied(m, T[i])

return moveMethodSuggestions(m => T[i])

25 return {}

Listing 2.3: JDeodorant: identification of Move Method Refactoring operations

Tsantalis et al. [25] devised a Move Method Refactoring technique integrated in

JDeodorant. The underlying approach uses a clustering analysis algorithm shown
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in Listing 2.3. Given a method M , the approach forms a set T of candidate target

classes where M might be moved (set T in Listing 2.3).

This set is obtained by examining the entities (i.e., attributes and methods) that

M accesses from the other classes (entity set S in Listing 2.3). In particular, each

class in the system containing at least one of the entities accessed by M is added to

T . Then, the candidate target classes in T are sorted in descending order according

to the number of entities that M accesses from each of them (sort(T ) in Listing 2.3).

In the subsequent steps each target class Ti is analyzed to verify its suitability to

be the recommended class. In particular, Ti must satisfy three conditions to be

considered in the set of candidate suggestions: (i) Ti is not the class M currently

belongs to, (ii) M modifies at least one data structure in Ti, and (iii) moving M

in Ti satisfies a set of behavior preserving preconditions (e.g., the target class does

not contain a method with the same signature as M ) [25]. The set of classes in T

satisfying all the conditions above are put in the suggestions set. If suggestions

is not empty, the approach suggests to move M in the first candidate target class

following the order of the sorted set T . On the other side, if suggestions is empty,

the classes in the sorted set T are again analyzed by applying milder constraints

than before. In particular, if a class Ti is the M owner class, then no refactoring

suggestion is performed and the algorithm stops. Otherwise, the approach checks

if moving the method M into Ti satisfies the behavior preserving preconditions. If

so, the approach suggests to move M into Ti. Thus, an instance of the Feature Envy

smell is identified.

The technique by Tsantalis et al. [25] uses structural information to suggest

Move Method Refactoring opportunities. However, there are cases where the Fea-

ture Envy and the envied class are related by a conceptual linkage rather than a

structural one. Here the lexical properties of source code can aid in the identifica-

tion of the right refactoring to perform. This is the reason why Bavota et al. pre-

sented MethodBook [30], an approach where methods and classes play the same

role of the people and groups, respectively, in FACEBOOK. In particular, methods

represent people, and so they have their own information as, for example, method

calls or conceptual relationships with the other methods in the same class as well
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as the methods in the other classes. To identify the envied class, MethodBook use

Relational Topic Model (RTM) [77]. Following the Facebook metaphor, the use of

RTM is able to identify “friends” of the method under analysis. If the class having

the highest number of “friends” of the considered method is not the current owner

class, a refactoring operation is suggested (i.e., a Feature Envy is detected).

The Refused Bequest. In Object Oriented development, one of the key features

aiming at reducing the effort and the cost in software maintenance is inheritance

[22]. For example, if there is something wrong in the definition of an attribute

inherited by some children classes, such attribute needs to be changed only in

the parent of such classes. However, it is not uncommon that developers make

improper use of the concept of inheritance, especially in the cases where other

kind of relationships would be more correct. The Refused Bequest smell arises when

a subclass does not support the interface of the superclass [22]. On one hand, this

happens when a subclass overrides a lot of methods inherited by its parent, on the

other hand the relationship of inheritance can be wrong also if the subclass does

not override the methods inherited from the parent, but never uses them or such

methods are never called by the clients of the subclass. In some cases, this smell

simply means that the relationship of inheritance is wrong, namely the subclass is

not a specialization of the parent.

A simple naive-method to estimate the presence of Refused Bequest smell in a

software system is by looking for classes having the following characteristics:

1. The class is in a hierarchy;

2. The class overrides more than ✓% of the methods defined by the parent.

However, the method reported above does not take into account the seman-

tics established by an “is-a” relationship between two classes of the system. For

this reason, Ligu et al. [78] introduced the identification of Refused Bequest using

a combination of static source code analysis and dynamic unit test execution. In

particular, the approach identifies classes affected by this smell by looking at the

classes that really “wants to support the interface of the superclass” [22]. If a class
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does not support the behavior of its parent, a Refused Bequest is detected. In order

to understand if a method of a superclass is actually called on subclass instances

by other classes of the system, Ligu et al. [78] intentionally override these methods

introducing an error in the new implementation (e.g., division by zero). If there

are classes in the system invoking the method, then a failure will occurs. Other-

wise, if the execution of all the test cases does not lead to a failure, the inherited

superclass methods are never used by the other classes of the system and, thus, an

instance of Refused Bequest is found. The approach proposed by Ligu et al. has

been implemented as an extension of the JDeodorant Eclipse plugin [67].

The Functional Decomposition. The concepts of Object Oriented development

are not always clear to developers working for the first time using such a paradigm.

1 RULE_CARD: Functional Decomposition {

RULE: Functional Decomposition

3 {ASSOC: associated FROM: mainClass

ONE TO: aClass MANY}

5 RULE: mainClass

{UNION NoInheritPoly FunctionClass}

7 RULE: NoInheritPoly

{INTER NoInheritance NoPolymorphism}

9 RULE: NoInheritance

{(METRIC: DIT, SUP_EQ, 1, 0)}

11 RULE: NoPolymorphism

{(STRUCT: DIFFERENT_PARAMETER)}

13 RULE: FunctionClass

{(SEMANTIC: CLASSNAME, {Make, Create, Creator,

15 Execute, Exec, Compute, Display, Calculate}}

RULE: aClass

17 {INTER ClassOneMethod FieldPrivate}

RULE: ClassOneMethod

19 {(STRUCT: ONE_METHOD)}

RULE: FieldPrivate

21 {(STRUCT: PRIVATE_FIELD, 100)};

Listing 2.4: Rule Card used by DECOR for detecting Functional

Decomposition instances.

Indeed, a developer with high experience in functional paradigm tends to ap-

ply procedural rules in the development of Object Oriented software, producing

errors in the design of the application. The smell coined as Functional Decompo-

sition is the most common code smell appearing in these cases. Brown et al. [61]

define the smell as “a main routine that calls many subroutines”. Specifically, it

often arises in classes that poorly use inheritance and polymorphism, declaring
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many private fields and implementing few methods [61]. In order to detect this

smell, some heuristics have been proposed. For example, knowing that usually a

routine is called with a name invoking its function, it is not surprising to find an

instance of Functional Decomposition in classes called with prefix as Make or Exe-

cute. At the same time, also heuristics based on the structure of a class can support

the identification of this smell. For instance, a functional class can have many de-

pendencies with classes composed by a very few number of methods addressing

a single function.

The unique approach able to identify this design flaw is DECOR [20]. To infer

the presence of the smell, DECOR uses a set of structural properties together to

lexical analysis of the name of a class (see the rule card in Listing 2.4). A class is

smelly if it is a main class (a class generally characterized by a procedural name,

(e.g., Display), in which inheritance and polymorphism are poorly used) having

many dependencies with small classes (classes with a very few number of methods

and many private fields) [20].

2.1.3 Detecting Frequently Changed Classes

Classes that change too frequently threat the stability of the source code and in-

crease the likelihood to introduce bugs [7]. In this category, two code smells

from the Fowler’s catalogue have been studied, i.e., Divergent Change and Shotgun

Surgery.

The Divergent Change. Fowler describes a Divergent Change as a class that is

“commonly changed in different ways for different reasons” [8]. Classes affected by this

smell generally have low cohesion.

The definition of Divergent Change provided by Fowler suggests that struc-

tural techniques are not completely suitable to detect instances of such a smell (as

demonstrated in Chapter 7 of this thesis). The reason is that in order to identify Di-

vergent Change instances it is necessary to analyze how the system evolves over

time. Only one approach provides an attempt to exploit structural information

(i.e., coupling) to identify this smell [79]. In particular, using coupling information
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it is possible to build a Design Change Propagation Probability (DCPP) matrix.

The DCPP is an n⇥ n matrix where the generic entry Ai, j is the probability that a

design change on the artifact i requires a change also to the artifact j. Such proba-

bility is given by the cdegree [80], i.e., an indicator of the number of dependencies

between two artifacts. Once the matrix is built, a Divergent Change instance is

detected if a column in the matrix contains high values for a particular artifact. In

other words, high values on the columns of the matrix correspond to have an high

number of artifacts related to the one under analysis and so the probability to have

a Divergent Change instance.

The Shotgun Surgery. This smell appears when “every time you make a kind of

change, you have to make a lot of little changes to a lot of different classes” [79]. As for

Divergent Change, also in this case finding a purely structural technique able to

provide an accurate detection of this smell is rather challenging (see Chapter 7).

Also in this case, the unique approach based on structural analysis is the one

presented by Rao and Raddy [79]. By relying on the same DCPP matrix built for

the identification of Divergent Change, the approach detects instances of Shotgun

Surgery if a row of the matrix contains high values for an artifact. Indeed, in this

case there is high probability that a change involving the artifact impact on more

than one artifact.

2.1.4 Detecting Code Clones

Classes that show the same code structure in more than one place in the system

are affected by the Duplicate Code smell. Even if having duplicate components in

source code not always implies a higher effort in the maintenance of a system [81],

developers may need to modify several times the same feature when a change

request involving such duplicate components is received. The identification of

code duplication is very challenging simply because, during the evolution, differ-

ent copies of a feature suffer different changes and this affect the possibility of the

identification of the common functionality provided by different copied features.

Generally, there are four types of code clones. The type I clones refer to identical
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code fragments that differ from each other only for small variations in comments

and layout [82]. Type II clones are instead identical fragments except for varia-

tions in identifier names and literal values in addition to Type I differences [82].

In addition to this, Type III clones have syntactically similar fragments that differ

at the statement level [82]. In particular, such fragments have statements added,

modified, or removed with respect to each other. Finally, type IV clones are syn-

tactically dissimilar fragments that implement the same high-level functionality

[82].

In the literature several approaches for clone detection have been proposed. It

is worth noting that a semantic detection of clones could be very hard to perform

and, in general, this is an undecidable problem [83]. This is the reason why most

of the proposed techniques focus their attention on the detection of syntactic or

structural similarity of source code.

For instance, a common way to detect clones is to analyze the AST of the given

program in order to find matches of sub-trees [84, 85, 86]. Alternatively, Kamiya

et al. [87] introduced the tool CCFINDER, where a program is divided in lexemes

and the token sequences are compared in order to find matches between two sub-

sequences. However, such approaches appear to be ineffective in cases where du-

plicated code suffers several modifications during its evolution. To mitigate such

a problem, Jiang et al. [88] introduced DECKARD, a technique able to identify

clones using a mix of tree-based and syntactic-based approaches. The process they

follow can be summarized as follow:

1. Given a program, a parser translates source code into parse tree;

2. Syntactic trees are processed in order to produce a set of vectors capturing

the syntactic information of parse tree;

3. The Euclidean distances are performed. Thus, the vectors are clustered;

4. Heuristics are applied to detect clones.

Graph-based techniques [89, 90, 91, 92, 93] rely on the analysis of the program

dependence graph (PDG), an intermediate representation of data and control de-
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pendencies [94]. In particular, Gabel et al. [89] tried to add in DECKARD semantic

information derived from the the PDG. They mapped subgraphs to related struc-

tured syntax and then detected clones using DECKARD. Chen et al. [93] defined

a “geometry characteristic” of dependency graphs to measure the similarity be-

tween methods before combining method-level similarities to detect application

clones in Android markets.

Other approches include the use of textual analysis [95, 96, 97, 98], in which

slight transformations to the source code are applied in order to measure the sim-

ilarity by comparing sequences of text. As a consequence, these techniques are

limited in their ability to recognize two fragments as a clone pair even if the differ-

ence between them is as inconsequential as a systematic renaming of identifiers.

To overcome the issues of textual-based technique, token-based approaches

[99, 100, 101, 102] relaxed the textual-based rule by operating at a higher level

of abstraction. In particular, the lexicon of the source code is analyzed in order

to produce a stream of tokens and compare subsequences to detect clones. While

these techniques generally improve the recognition power, the token abstraction

has a tendency to admit more false positives [82].

Recently, White et al. [83] proposed a learning-based approach to model code

fragments exploiting empirically-based patterns in structures of terms in code.

Specifically, the approach relies on deep learning for automatically linking pat-

terns mined at the lexical level with patterns mined at the syntactic level.

2.1.5 Other Detection Approaches

Besides the approaches mentioned above, other researchers proposed complemen-

tary heuristics or new methodologies for detecting a variety of code smells.

Munro [26] presented a metric-based detection technique able to identify in-

stances of two smells, i.e., Lazy Class and Temporary Field, in the source code. A set

of thresholds is applied to some structural metrics able to capture those smells. In

the case of Lazy Class, the metrics used for the identification are Number of Meth-

ods (NOM), LOC, Weighted Methods per Class (WMC), and Coupling Between
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Objects (CBO).

Van Emden and Moonen [103] presented JCOSMO, a code smell browser that

visualizes the detected smells in the source code. In particular, they focus their

attention on two Java programming smells, known as instanceof and typecast. The

first occurs when there are too many instanceof operators in the same block of code

that make the source code difficult to read and understand. The typecast smell

appears instead when an object is explicitly converted from one class type into

another, possibly performing illegal casting which results in a runtime error.

Ratiu et al. [12] proposed to use the historical information of the suspected

flawed structure to increase the accuracy of the automatic problem detection. How-

ever, it is important to note that in this case the change history information is not

exploited to detect code smells (as done in Section 7), but for understanding the

persistance and the maintenance effort spent on design problems.

Code smell detection can be also formulated as an optimization problem, as

pointed out by Kessentini et al. [32] as they presented a technique to detect design

defects by following the assumption that what significantly diverges from good

design practices is likely to represent a design problem. The advantage of their

approach is that it does not look for specific code smells (as most approaches) but

for design problems in general. Also, in the reported evaluation, the approach

was able to achieve a 95% precision in identifying design defects [32]. Kessentini

et al. [33] also presented a cooperative parallel search-based approach for iden-

tifying code smells instances with an accuracy higher than 85%. Boussaa et al.

[34] proposed the use of competitive coevolutionary search to code-smell detec-

tion problem. In their approach two populations evolve simultaneously: the first

generates detection rules with the aim of detecting the highest possible proportion

of code smells, whereas the second population generates smells that are currently

not detected by the rules of the other population. Sahin et al. [35] proposed an

approach able to generate code smell detection rules using a bi-level optimization

problem, in which the first level of optimization task creates a set of detection rules

that maximizes the coverage of code smell examples and artificial code smells gen-

erated by the second level. The lower level is instead responsible to maximize the
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number of code smells artificially generated. The empirical evaluation shows that

this approach achieves an average of more than 85% in terms of precision and

recall.

Arcelli Fontana et al. [36, 37] suggested the use of learning algorithms to dis-

cover code smells, pointing out that a training set composed of one hundred in-

stances is sufficient to reach very high values of accuracy. The same authors de-

fined a structural-based approach, named JCODEODOR, for detecting and filtering

code smells [104, 105]. Moreover, such approach is able to prioritize code smells

through an intensity index [106], which is based on to what extent structural met-

rics exceed a give threshold. As shown in Chapter 11, we exploited this intensity

index in the context of bug prediction.

Finally, a recent trend is the definition of context-based detection approaches.

Morales et al. [38] proposed the use of developers’ context as a way for improving

the practical usefulness of code smell detectors, devising an approach for auto-

matic refactoring of code smells. Sae-Lim et al. [39], instead, defined a code smell

prioritization tool that mines the issue tracker of a system in order to suggest the

refactoring of code smells involved in an issue.

2.2 Literature Review on the Empirical Studies on Code

Smells

This Section reports an overview of the empirical studies conducted with the aim

of assessing the longevity and the impact of code smells on maintainability.

2.2.1 Evolution of Smells

A first study that takes into account the way the code smells evolve during the

evolution of a system has been conducted by Chatzigeorgiou and Manakos [13].

The reported results show that (i) the number of instances of code smells increases

during time; and (ii) developers are reluctant to perform refactoring operations in

order to remove them. On the same line are the results reported by Peters and
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Zaidman [107], who show that developers are often aware of the presence of code

smells in the source code, but they do not invest time in performing refactoring

activities aimed at removing them. A partial reason for this behavior is given by

Arcoverde et al. [14], who studied the longevity of code smells showing that they

often survive for a long time in the source code. The authors point to the will of

avoiding changes to API as one of the main reasons behind this result [14].

The evolution of code smells is also studied by Olbrich et al. [108], who an-

alyzed the evolution of two types of code smells, namely God Class and Shotgun

Surgery, showing that there are periods in which the number of smells increases

and periods in which this number decreases. They also show that the increase/de-

crease of the number of instances does not depend on the size of the system.

Vaucher et al. [109] conducted a study on the evolution of the God Class smell,

aimed at understanding whether they affect software systems for long periods of

time or, instead, are refactored while the system evolves. Their goal is to define

a method able to discriminate between God Class instances that have been intro-

duced by design and God Class instances that were introduced unintentionally.

In a closely related field, Bavota et al. [110] analyzed the distribution of unit

test smells in 18 software systems providing evidence that they are widely spread,

but also that most of the them have a strong negative impact on code comprehen-

sibility. Similarly, Palomba et al. [111] conducted a study on the distribution of

test smells on a dataset of 110 software systems where test code was automatically

generated by the EVOSUITE tool [112]. Their findings confirmed that test smells

are widely spread.

Göde [113] investigated to what extent code clones are removed through delib-

erate operations, finding significant divergences between the code clones detected

by existing tools and the ones removed by developers. Bazrafshan and Koschke

[114] extended the work by Göde, analyzing whether developers remove code

clones using deliberate or accidental modifications, finding that the former cat-

egory is the most frequent. Kim et al. [115] studied the lifetime of code clones,

finding that many clones are fixed shortly, while long-lived code clones are not

easy to refactor because they evolve independently.
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Thummalapenta et al. [116] introduced the notion of “late propagation” re-

lated to changes that have been propagated across cloned code instances at dif-

ferent times. An important difference between research conducted in the area

of clone evolution and code smell evolution is that, differently from other code

smells, clone evolution can be seen of the co-evolution of multiple, similar (i.e.,

cloned) code elements, and such evolution can either be consistent or inconsistent

(e.g., due to missing change propagation) [116].

2.2.2 Impact of Smells on Maintenance Properties

Several empirical studies have investigated the impact of code smells on mainte-

nance activities. Abbes et al. [18] studied the impact of two types of code smells,

namely Blob and Spaghetti Code, on program comprehension. Their results show

that the presence of a code smell in a class does not have an important impact

on developers’ ability to comprehend the code. Instead, a combination of more

code smells affecting the same code components strongly decreases developers’

ability to deal with comprehension tasks. The interaction between different smell

instances affecting the same code components has also been studied by Yamashita

et al. [9], who confirmed that developers experience more difficulties in working

on classes affected by more than one code smell. The same authors also analyzed

the impact of code smells on maintainability characteristics [117]. They identi-

fied which maintainability factors are reflected by code smells and which ones

are not, basing their results on (i) expert-based maintainability assessments, and

(ii) observations and interviews with professional developers. Sjoberg et al. [118]

investigated the impact of twelve code smells on the maintainability of software

systems. In particular, the authors conducted a study with six industrial devel-

opers involved in three maintenance tasks on four Java systems. The amount of

time spent by each developer in performing the required tasks has been measured

through an Eclipse plug-in, while a regression analysis has been used to measure

the maintenance effort on source code files having specific properties, including

the number of smells affecting them. The achieved results show that smells do
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not always constitute a problem, and that often class size impacts maintainability

more than the presence of smells.

Lozano et al. [15] proposed the use of change history information to better

understand the relationship between code smells and design principle violations,

in order to assess the severity of design flaws. The authors found that the types

of maintenance activities performed over the evolution of the system should be

taken into account to focus refactoring efforts. In our study, we point out how

particular types of maintenance activities (i.e., enhancement of existing features

or implementation of new ones) are generally more associated with code smell

introduction. Deligiannis et al. [119] performed a controlled experiment showing

that the presence of God Class smell negatively affects the maintainability of source

code. Also, the authors highlight an influence played by these smells in the way

developers apply the inheritance mechanism.

Khomh et al. [16, 17] demonstrated that the presence of code smells increases

the code change proneness. Also, they showed that the code components affected

by code smells are more fault-prone with respect to components not affected by

any smell [16, 17]. Gatrell and Counsell [44] conducted an empirical study aimed

at quantifying the effect of refactoring on change- and fault-proneness of classes.

In particular, the authors monitored a commercial C# system for twelve months

identifying the refactorings applied during the first four months. They examined

the same classes for the second four months in order to determine whether the

refactoring results in a decrease of change- and fault-proneness. They also com-

pared such classes with the classes of the system that, during the same time pe-

riod, have not been refactored. The results revealed that classes subject to refactor-

ing have a lower change- and fault-proneness, both considering the time period

in which the same classes were not refactored and classes in which no refactor-

ing operations were applied. Li et al. [42] empirically evaluated the correlation

between the presence of code smells and the probability that the class contains

errors. They studied the post-release evolution process showing that many code

smells are positively correlated with class errors. Olbrich et al. [108] conducted a

study on the God Class and Brain Class code smells, reporting that these code smells
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were changed less frequently and had a fewer number of defects with respect to

the other classes. D’Ambros et al. [41] also studied the correlation between the

Feature Envy and Shotgun Surgery smells and the defects in a system, reporting no

consistent correlation between them.

2.2.3 Empirical Studies on Refactoring

Wang et al. [120] conducted a survey with ten industrial developers in order to un-

derstand which are the major factors that motivate their refactoring activities. The

authors report twelve different factors pushing developers to adopt refactoring

practices and classified them in intrinsic motivators and external motivators. In par-

ticular, Intrinsic motivators are those for which developers do not obtain external

rewards (for example, an intrinsic motivator is the Responsibility with Code Author-

ship, namely developers want to ensure high quality for their code). Regarding the

external motivators, an example is the Recognitions from Others, i.e., high technical

ability can help the software developers gain recognitions.

Murphy-Hill et al. [121] analyzed eight different datasets trying to understand

how developers perform refactorings. Examples of the exploited datasets are us-

age data from 41 developers using the Eclipse environment, data from the Eclipse

Usage Collector aggregating activities of 13,000 developers for almost one year,

and information extracted from versioning systems. Some of the several inter-

esting findings they found were (i) almost 41% of development activities con-

tain at least one refactoring session, (ii) programmers rarely (almost 10% of the

time) configure refactoring tools, (iii) commit messages do not help in predicting

refactoring, since rarely developers explicitly report their refactoring activities in

them, (iv) developers often perform floss refactoring, namely they interleave refac-

toring with other programming activities, and (v) most of the refactoring opera-

tions (close to 90%) are manually performed by developers without the help of

any tool.

Kim et al. [122] presented a survey performed with 328 Microsoft engineers

(of which 83% developers) to investigate (i) when and how they refactor code, (ii)
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if automated refactoring tools are used by them and (iii) developers’ perception

towards the benefits, risks, and challenges of refactoring [122]. The main findings

of the study reported that:

• While developers recognize refactoring as a way to improve the quality of a

software system, in almost 50% of the cases they do not define refactoring as

a behavior-preserving operation;

• The most important symptom that pushes developers to perform refactoring

is low readability of source code;

• 51% of developers manually perform refactoring;

• The main benefits that the developers observed from the refactoring were

improved readability (43%) and improved maintainability (30%);

• The main risk that developers fear when performing refactoring operations

is bug introduction (77%).

Kim et al. [122] also reported the results of a quantitative analysis performed

on the Windows 7 change history showing that code components refactored over

time experienced a higher reduction in the number of inter-module dependencies

and post-release defects than other modules. Similar results have been obtained by

Kataoka et al. [123], which analyzed the history of an industrial software system

comparing the classes subject to the application of refactorings with the classes

never refactored, finding a decreasing of coupling metrics.

Finally, a number of works have studied the relationship between refactoring

and software quality. Bavota et al. [124] conducted a study aimed at investigat-

ing to what extent refactoring activities induce faults. They show that refactorings

involving hierarchies (e.g., pull down method) induce faults very frequently. Con-

versely, other kinds of refactorings are likely to be harmless in practice.

Stroggylos and Spinellis [125] studied the impact of refactoring operations on

the values of eight object-oriented quality metrics. Their results show the possible

negative effects that refactoring can have on some quality metrics (e.g., increased
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value of the LCOM metric). On the same line, Stroullia and Kapoor [126], analyzed

the evolution of one system observing a decrease of LOC and NOM (Number of

Method) metrics on the classes in which a refactoring has been applied. Szoke et

al. [127] performed a study on five software systems to investigate the relationship

between refactoring and code quality. They show that small refactoring operations

performed in isolation rarely impact software quality. On the other side, a high

number of refactoring operations performed in block helps in substantially im-

proving code quality. Alshayeb [128] investigated the impact of refactoring opera-

tions on five quality attributes, namely adaptability, maintainability, understand-

ability, reusability, and testability. Their findings highlight that benefits brought

by refactoring operations on some code classes are often counterbalanced by a de-

crease of quality in some other classes. Moser et al. [129] conducted a case study

in an industrial environment aimed at investigating the impact of refactoring on

the productivity of an agile team and on the quality of the code they produce. The

achieved results show that refactoring not only increases software quality but also

helps to increase developers’ productivity.

36



PART 2

EMPIRICAL STUDIES ON CODE SMELLS

37



Chapter 3

When and Why Your Code Starts to

Smell Bad (and Whether the Smells

Go Away)

3.1 Introduction

The technical debt metaphor introduced by Cunningham [4] well explains the

trade-offs between delivering the most appropriate but still immature product,

in the shortest time possible [4, 130, 131, 132, 133]. Bad code smells (shortly “code

smells” or “smells”), i.e., symptoms of poor design and implementation choices

[8], represent one important factor contributing to technical debt, and possibly

affecting the maintainability of a software system [131]. In the past and, most no-

tably, in recent years, several studies investigated the relevance that code smells

have for developers [50, 134], the extent to which code smells tend to remain in a

software system for long periods of time [14, 13, 15, 12], as well as the side effects

of code smells, such as an increase in change- and fault-proneness [16, 17] or de-

crease of software understandability [18] and maintainability [19, 10, 9]. While the

repercussions of code smells on software quality have been empirically proven,

there is still noticeable lack of empirical evidence related to how, when, and why

they occur in software projects, as well as whether, after how long, and how they
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are removed [130]. This represents an obstacle for an effective and efficient man-

agement of technical debt. Also, understanding the typical life-cycle of code smells

and the actions undertaken by developers to remove them is of paramount impor-

tance in the conception of recommender tools for developers’ support. In other

words, only a proper undertanding of the phenomenon would allow the creation

of recommenders able to highlight the presence of code smells and suggesting

refactorings only when appropriate, hence avoiding information overload for de-

velopers [135].

Common wisdom suggests that urgent maintenance activities and pressure to

deliver features while prioritizing time-to-market over code quality are often the

causes of such smells. Generally speaking, software evolution has always been

considered as one of the reasons behind “software aging” [5] or “increasing com-

plexity” [3, 136, 137]. Also, one of the common beliefs is that developers remove

code smells from the system by performing refactoring operations. However, to

the best of our knowledge, there is no comprehensive empirical investigation into

when and why code smells are introduced in software projects, how long they sur-

vive, and how they are removed.

In this chapter we fill the void in terms of our understanding of code smells,

reporting the results of a large-scale empirical study conducted on the change his-

tory of 200 open source projects belonging to three software ecosystems, namely

Android, Apache and Eclipse. The study aims at investigating (i) when smells

are introduced in software projects, (ii) why they are introduced (i.e., under what

circumstances smell introductions occur and who are the developers responsible

for introducing smells), (iii) how long they survive in the system, and (iv) how they

are removed. To address these research questions, we developed a metric-based

methodology for analyzing the evolution of code entities in change histories of

software projects to determine when code smells start manifesting themselves and

whether this happens suddenly (i.e., because of a pressure to quickly introduce a

change), or gradually (i.e., because of medium-to-long range design decisions).

We mined over half a million of commits and we manually analyzed over 10K of

them to understand how code smells are introduced and removed from software
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systems. We are unaware of any published technical debt, in general, and code

smells study, in particular, of comparable size. The obtained results allowed us to

report quantitative and qualitative evidence on when and why smells are intro-

duced and removed from software projects as well as implications of these results,

often contradicting common wisdom. In particular, our main findings show that

(i) most of the code smells are introduced when the (smelly) code artifact is cre-

ated in the first place, and not as the result of maintenance and evolution activities

performed on such an artifact, (ii) 80% of code smells, once introduced, are not

removed by developers, and (iii) the 20% of removed code smells are very rarely

(in 9% of cases) removed as a direct consequence of refactoring activities.

The chapter makes the following notable contributions:

1. A methodology for identifying smell-introducing changes, namely a technique

able to analyze change history information in order to detect the commit,

which introduced a code smell;

2. A large-scale empirical study involving three popular software ecosystems aimed at

reporting quantitative and qualitative evidence on when and why smells are

introduced in software projects, what is their survivability, and how code

smells are removed from the source code, as well as implications of these

results, often contradicting common wisdom.

3. A publicly available comprehensive dataset [138] that enables others to conduct

further similar or different empirical studies on code smells (as well as com-

pletely reproducing our results).

Implications of the study. From a purely empirical point of view, the study aims

at confirming and/or contradicting the common wisdom about software evolu-

tion and manifestation of code smells. From a more practical point of view, the

results of this study can help distinguish among different situations that can arise

in software projects, and in particular in cases where:
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• Smells are introduced when a (sub) system has been conceived. Certainly,

in such cases smell detectors can help identify potential problems, although

this situation can trigger even more serious alarms related to potentially poor

design choices made in the system since its inception (i.e., technical debt that

smell detectors will not be able to identify from a system’s snapshot only),

that may require careful re-design in order to avoid worse problems in fu-

ture.

• Smells occur suddenly in correspondence to a given change, pointing out

cases for which recommender systems may warn developers of emergency

maintenance activities being performed and the need to consider refactoring

activities whenever possible.

• The symptom simply highlights—as also pointed out in a previous study

[50, 134]—the intrinsic complexity, size (or any other smell-related character-

istics) of a code entity, and there is little or nothing one can do about that.

Often some situations that seem to fall in the two cases above should be con-

sidered in this category instead.

• Smells manifest themselves gradually. In such cases, smell detectors can

identify smells only when they actually manifest themselves (e.g., some met-

rics go above a given threshold) and suggest refactoring actions. Instead, in

such circumstances, tools monitoring system evolution and identifying met-

ric trends, combined with history-based smell detectors [52], should be used.

In addition, our findings, which are related to the very limited refactoring ac-

tions undertaken by developers to remove code smells, call for further studies

aimed at understanding the reasons behind this result. Indeed, it is crucial for the

research community to study and understand whether:

• developers perceive (or don’t) the code smells as harmful, and thus they

simply do not care about removing them from the system; and/or
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Table 3.1: Characteristics of ecosystems under analysis.

Ecosystem #Proj. #Classes KLOC #Commits #Issues
Mean Min-Max

Story Length Story Length

Apache 100 4-5,052 1-1,031 207,997 3,486 6 1-15

Android 70 5-4,980 3-1,140 107,555 1,193 3 1-6

Eclipse 30 142-16,700 26-2,610 264,119 124 10 1-13

Overall 200 - - 579,671 4,803 6 1-15

• developers consider the cost of refactoring code smells too high when con-

sidering possible side effects (e.g., bug introduction [124]) and expected ben-

efits; and/or

• the available tools for the identification/refactoring of code smells are not

sufficient/effective/usable from the developers’ perspective.

3.2 Study Design

The goal of the study is to analyze the change history of software projects with the

purpose of investigating when code smells are introduced and fixed by developers

and the circumstances and reasons behind smell appearances.

More specifically, the study aims at addressing the following four research

questions (RQs):

• RQ1: When are code smells introduced? This research question aims at investi-

gating to what extent the common wisdom suggesting that “code smells are

introduced as a consequence of continuous maintenance and evolution activities

performed on a code artifact” [8] applies. Specifically, we study “when” code

smells are introduced in software systems, to understand whether smells are

introduced as soon as a code entity is created, whether smells are suddenly

introduced in the context of specific maintenance activities, or whether, in-

stead, smells appear “gradually” during software evolution. To this aim, we

investigated the presence of possible trends in the history of code artifacts

that characterize the introduction of specific types of smells.

42



Chapter 3. When and Why Your Code Starts to Smell Bad

• RQ2: Why are code smells introduced? The second research question aims at

empirically investigating under which circumstances developers are more

prone to introduce code smells. We focus on factors that are indicated as

possible causes for code smell introduction in the existing literature [8]: the

commit goal (e.g., is the developer implementing a new feature or fixing a

bug?), the project status (e.g., is the change performed in proximity to a ma-

jor release deadline?), and the developer status (e.g., a newcomer or a senior

project member?).

• RQ3: What is the survivability of code smells? In this research question we aim

to investigate how long a smell remains in the code. In other words, we

want to study the survivability of code smells, that is the probability that a

code smell instance survives over time. To this aim, we employ a statisti-

cal method called survival analysis [139]. In this research question, we also

investigate differences of survivability among different types of code smells.

• RQ4: How do developers remove code smells? The fourth and last research ques-

tion aims at empirically investigating whether and how developers remove

code smells. In particular, we want to understand whether code smells are

removed using the expected and suggested refactoring operations for each

specific type of code smell (as suggested by Fowler [8]), whether they are re-

moved using “unexpected refactorings”, or whether such a removal is a side

effect of other changes. To achieve this goal, we manually analyzed 979 com-

mits removing code smells by following an open coding process inspired by

grounded theory [140].

3.2.1 Context Selection

The context of the study consists of the change history of 200 projects belonging

to three software ecosystems, namely Android, Apache, and Eclipse. Table 3.1

reports for each of them (i) the number of projects analyzed, (ii) size ranges in

terms of the number of classes and KLOC, (iii) the overall number of commits
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and issues analyzed, and (iv) the average, minimum, and maximum length of the

projects’ history (in years) analyzed in each ecosystem. All the analyzed projects

are hosted in Git repositories and have associated issue trackers.

The Android ecosystem contains a random selection of 70 open source apps

mined from the F-Droid1 forge. The Apache ecosystem consists of 100 Java projects

randomly selected among those available2. Finally, the Eclipse ecosystem consists

of 30 projects randomly mined from the list of GitHub repositories managed by the

Eclipse Foundation3. The choice of the ecosystems to analyze is not random, but

rather driven by the motivation to consider projects having (i) different sizes, e.g.,

Android apps are by their nature smaller than projects in Apache’s and Eclipse’s

ecosystems, (ii) different architectures, e.g., we have Android mobile apps, Apache

libraries, and plug-in based architectures in Eclipse projects, and (iii) different de-

velopment bases, e.g., Android apps are often developed by small teams whereas

several Apache projects are carried out by dozens of developers [141]. Also, we

limited our study to 200 projects since, as it will be shown later, the analysis we

performed is not only computationally expensive, but also requires the manual

analysis of thousands of data points. To sum up, we mined 579,671 commits and

4,803 issues.

We focus our study on the following types of smells:

1. Blob Class: a large class with different responsibilities that monopolizes most

of the system’s processing [61];

2. Class Data Should be Private: a class exposing its attributes, violating the in-

formation hiding principle [8];

3. Complex Class: a class having a high cyclomatic complexity [61];

4. Functional Decomposition: a class where inheritance and polymorphism are

poorly used, declaring many private fields and implementing few methods

[61];
1https://f-droid.org/
2https://projects.apache.org/indexes/quick.html
3https://github.com/eclipse
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Table 3.2: Quality metrics measured in the context of RQ1.

Metric Description

Lines of Code (LOC) The number of lines of code excluding white spaces and comments

Weighted Methods per Class (WMC) [64] The complexity of a class as the sum of the McCabe’s cyclomatic complexity of its methods

Response for a Class (RFC) [64] The number of distinct methods and constructors invoked by a class

Coupling Between Object (CBO) [64] The number of classes to which a class is coupled

Lack of COhesion of Methods (LCOM) [64] The higher the pairs of methods in a class sharing at least a field, the higher its cohesion

Number of Attributes (NOA) The number of attributes in a class

Number of Methods (NOM) The number of methods in a class

5. Spaghetti Code: a class without structure that declares long methods without

parameters [61].

While several other smells exist in the literature [8, 61], we need to limit our

analysis to a subset due to computational constraints. However, we carefully keep

a mix of smells related to complex/large code components (e.g., Blob Class, Com-

plex Class) as well as smells related to the lack of adoption of good Object-Oriented

coding practices (e.g., Class Data Should be Private, Functional Decomposition).

Thus, the considered smells are representative of the categories of smells investi-

gated in previous studies (see Section 2).

3.2.2 Data Extraction and Analysis

This subsection describes the data extraction and analysis process that we fol-

lowed to answer our research questions.

When are code smells introduced?

To answer RQ1 we firstly clone the 200 GIT repositories. Then, we analyze each

repository ri using a tool that we developed (named as HISTORYMINER), with

the purpose of identifying smell-introducing commits. Our tool mines the entire

change history of ri, checks out each commit in chronological order, and runs an

implementation of the DECOR smell detector based on the original rules defined

by Moha et al. [20]. DECOR identifies smells using detection rules based on the
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values of internal quality metrics4. The choice of using DECOR is driven by the

fact that (i) it is a state-of-the-art smell detector having a high accuracy in detecting

smells [20]; and (ii) it applies simple detection rules that allow it to be very effi-

cient. Note that we ran DECOR on all source code files contained in ri only for the

first commit of ri. In the subsequent commits DECOR has been executed only on

code files added or modified in each specific commit to save computational time.

As an output, our tool produces, for each source code file fj 2 ri the list of commits

in which fj has been involved, specifying if fj has been added, deleted, or mod-

ified and if fj was affected in that specific commit, by one of the five considered

smells.

Starting from the data generated by the HISTORYMINER, we compute, for each

type of smell (smellk) and for each source code file (fj), the number of commits

performed on fj since the first commit involving fj and adding the file to the

repository, up to the commit in which DECOR detects that fj is affected by smellk.

Clearly, such numbers are only computed for files identified as affected by the

specific smellk.

When analyzing the number of commits needed for a smell to affect a code

component, we can have two possible scenarios. In the first scenario, smell in-

stances are introduced during the creation of source code artifacts, i.e., in the first

commit involving a source code file. In the second scenario, smell instances are

introduced after several commits and, thus, as a result of multiple maintenance

activities. For the latter scenario, besides running the DECOR smell detector for

the project snapshot related to each commit, the HISTORYMINER also computes,

for each snapshot and for each source code artifact, a set of quality metrics (see

Table 3.2). As done for DECOR, quality metrics are computed for all code arti-

facts only during the first commit, and updated at each subsequent commit for

added and modified files. The purpose of this analysis is to understand whether

the trend followed by such metrics differ between files affected by a specific type

of smell and files not affected by such a smell. For example, we expect that classes

4An example of detection rule exploited to identify Blob classes can be found at http:

//tinyurl.com/paf9gp6.
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becoming Blobs will exhibit a higher growth rate than classes that are not going to

become Blobs.

In order to analyze the evolution of the quality metrics, we need to identify

the function that best approximates the data distribution, i.e., the values of the

considered metrics computed in a sequence of commits. We found that the best

model is the linear function. Note that we only consider linear regression models

using a single metric at a time (i.e., we did not consider more than one metric in

the same regression model) since our interest is to observe how a single metric

in isolation describes the smell-introducing process. We consider the building of

more complex regression models based on more than one metric as part of our

future work.

Having identified the model to be used, we compute, for each file fj 2 ri, the

regression line of its quality metric values. If file fj is affected by a specific smellk,

we compute the regression line considering the quality metric values computed

for each commit involving fj from the first commit (i.e., where the file was added

to the versioning system) to the commit where the instance of smellk was detected

in fj . Instead, if fj is not affected by any smell, we consider only the first nth

commits involving the file fj , where n is the average number of commits required

by smellk to affect code instances. Then, for each metric reported in Table 3.2,

we compare the distributions of regression line slopes for smell-free and smelly

files. The comparison is performed using a two-tailed Mann-Whitney U test [142].

The results are intended as statistically significant at ↵ = 0.05. We also estimate

the magnitude of the observed differences using the Cliff’s Delta (or d), a non-

parametric effect size measure [143] for ordinal data. We follow the guidelines

in [143] to interpret the effect size values: small for d < 0.33 (positive as well as

negative values), medium for 0.33  d < 0.474 and large for d � 0.474.

Overall, the data extraction for RQ1 (i.e., the smells detection and metrics com-

putation at each commit for the 200 systems) took eight weeks on a Linux server

having 7 quad-core 2.67 GHz CPU (28 cores) and 24 Gb of RAM.
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Why are code smells introduced?

One challenge arising when answering RQ2 is represented by the identification of

the specific commit (or also possibly a set of commits) where the smell has been in-

troduced (from now on referred to as a smell-introducing commit). Such information

is crucial to explain under which circumstances these commits were performed. A

trivial solution would have been to use the results of our RQ1 and consider the

commit cs in which DECOR detects for the first time a smell instance smellk in

a source code file fj as a commit-introducing smell in fj . However, while this

solution would work for smell instances that are introduced in the first commit

involving fj (there is no doubt on the commit that introduced the smell), it would

not work for smell instances that are the consequence of several changes, per-

formed in n different commits involving fj . In such a situation, on one hand, we

cannot simply assume that the first commit in which DECOR identifies the smell

is the one introducing that smell, because the smell appearance might be the re-

sult of several small changes performed across the n commits. On the other hand,

we cannot assume that all n commits performed on fj are those (gradually) intro-

ducing the smell, since just some of them might have pushed fj toward a smelly

direction. Thus, to identify the smell-introducing commits for a file fj affected by

an instance of a smell (smellk), we use the following heuristic:

• if smellk has been introduced in the commit c1 where fj has been added to

the repository, then c1 is the smell-introducing commit;

• else given C = {c1, c2, . . . , cn} the set of commits involving fj and leading to

the detection of smellk in cn we use the results of RQ1 to select the set of qual-

ity metrics M allowing to discriminate between the groups of files that are

affected and not affected in their history by smellk. These metrics are those

for which we found statistically significant difference between the slope of

the regression lines for the two groups of files accompanied by at least a

medium effect size. Let s be the slope of the regression line for the metric

m 2 M built when considering all commits leading fj to become affected by

a smell and si the slope of the regression line for the metric m built when con-
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Figure 3.1: Example of identifying smell-introducing commits.

sidering just two subsequent commits, i.e., ci�1 and ci for each i 2 [2, ..., n]. A

commit ci 2 C is considered as a smell-introducing commit if |si| > |s|, i.e.,

the commit ci significantly contributes to the increment (or decrement) of the

metric m.

Figure 3.1 reports an example aimed at illustrating the smell-introducing com-

mits identification for a file fj . Suppose that fj has been involved in eight commits

(from c1 to c8), and that in c8 a Blob instance has been identified by DECOR in

fj . Also, suppose that the results of our RQ1 showed that the LOC metric is the

only one “characterizing” the Blob introduction, i.e., the slope of the LOC regres-

sion line for Blobs is significantly different than the one of the regression line built

for classes which are not affected by the Blob smell. The black line in Figure 3.1

represents the LOC regression line computed among all the involved commits,

having a slope of 1.3. The gray lines represent the regression lines between pairs

of commits (ci�1, ci), where ci is not classified as a smell-introducing commit (their

slope is lower than 1.3). Finally, the red-dashed lines represent the regression lines

between pairs of commits (ci�1, ci), where ci is classified as a smell-introducing

commit (their slope is higher than 1.3). Thus, the smell-introducing commits in

the example depicted in Figure 3.1 are: c3, c5, and c7. While other commits may

possibly contribute to the smell introduction, our methodology identifies as smell-
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Table 3.3: Tags assigned to the smell-introducing commits.

Tag Description Values

COMMIT GOAL TAGS

Bug fixing The commit aimed at fixing a bug [true,false]

Enhancement
The commit aimed at implementing an enhance-

ment in the system
[true,false]

New feature
The commit aimed at implementing a new feature

in the system
[true,false]

Refactoring
The commit aimed at performing refactoring op-

erations
[true,false]

PROJECT STATUS TAGS

Working on

release

The commit was performed [value] before the is-

suing of a major release

[one day, one week, one month,

more than one month]

Project

startup

The commit was performed [value] after the start-

ing of the project

[one week, one month, one year,

more than one year]

DEVELOPER STATUS TAGS

Workload
The developer had a [value] workload when the

commit has been performed
[low,medium,high]

Ownership
The developer was the owner of the file in which

the commit introduced the smell
[true,false]

Newcomer
The developer was a newcomer when the commit

was performed
[true,false]

introducing commits the ones that are more likely to contain modifications having

a strong negative impact on the overall quality of a class (e.g., the commits in which

the size of a class increases a lot). Overall, we obtained 9,164 smell-introducing

commits in 200 systems, that we used to answer RQ2.

After having identified smell-introducing commits, with the purpose of under-

standing why a smell was introduced in a project, we classify them by assigning

to each commit one or more tags among those reported in Table 3.3. The first

set of tags (i.e., commit goal tags) aims at explaining what the developer was do-

ing when introducing the smell. To assign such tags we firstly download the issues

for all 200 projects from their JIRA or BUGZILLA issue trackers. Then, we check

whether any of the 9,164 smell-introducing commits were related to any of the

collected issues. To link issues to commits we used (and complemented) two ex-
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isting approaches. The first one is the regular expression-based approach by Fis-

cher et al. [144] matching the issue ID in the commit note. The second one is

a re-implementation of the ReLink approach proposed by Wu et al. [145], which

considers the following constraints: (i) matching the committer/authors with is-

sue tracking contributor name/email; (ii) the time interval between the commit

and the last comment posted by the same author/contributor on the issue tracker

must be less than seven days; and (iii) the Vector Space Model (VSM) [55] cosine

similarity between the commit note and the last comment referred above must be

greater than 0.7. RELINK has been shown to accurately link issues and commits

(89% for precision and 78% for recall) [145]. When it was possible to identify a link

between one of the smell-introducing commits and an issue, and the issue type

was one of the goal-tags in our design (i.e., bug, enhancement, or new feature),

such tag was automatically assigned to the commit and its correctness was man-

ually double-checked5, which verified the correctness of the issue category (e.g.,

that an issue classified as a bug was actually a bug). We were able to automati-

cally assign a tag with this process in 471 cases, i.e., for a small percentage (5%)

of the commits, which is not surprising and in agreement with previous findings

[146]. Of these 471 were automatically assigned tags, 126 were corrected during

the manual double-check, most of them (96) due to a misclassification between

enhancement and new feature. In the remaining 8,693 cases, two of the authors6

manually analyzed the commits, assigning one or more of the goal-tags by relying

on the analysis of the commit messages and of the unix diffs between the commit

under analysis and its predecessor.

Concerning the project-status tags (see Table 3.3), the Working on release tag can

assume as possible values one day, one week, one month, or more than one month be-

fore the issuing of a major release. The aim of such a tag is to indicate whether,

when introducing the smell, the developer was close to a project’s deadline. We just con-

sider major releases since those are the ones generally representing a real deadline

for developers, while minor releases are sometimes issued just due to a single bug

5The thesis’ author was responsible of this task.
6The thesis’ author was equally involved in this task.
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fix. To assign such tags, one of the authors7 identified the dates in which the major

releases were issued by exploiting the Git tags (often used to tag releases), and the

commit messages left by developers. Concerning the Project startup tag, it can as-

sume as values one week, one month, one year, or more than one year after the project’s

start date. This tag can be easily assigned by comparing the commit date with the

date in which the project started (i.e., the date of the first commit). This tag can

be useful to verify whether during the project’s startup, when the project design might

not be fully clear, developers are more prone to introduce smells. Clearly, considering

the date of the first commit in the repository as the project’s startup date can intro-

duce imprecisions in our data in case of projects migrated to Git in a later stage

of their history. For this reason, we verify whether the first release of each project

in our dataset was tagged with 0.1 or 1.0 (i.e., a version number likely indicating

the first release of a project). As a result, we exclude from the Project startup anal-

ysis 31 projects having a partial change history in the mined Git repository, for a

total of 552 smell-introducing commits excluded. While we acknowledge that also

this heuristic might introduce imprecisions (e.g., a project starting from release 1.0

could still have a previous 0.x release), we are confident that it helps in eliminating

most of the problematic projects from our dataset.

Finally, we assign developer-status tags to smell-introducing commits. The

Workload tag measures how busy a developer was when introducing the bad smell.

In particular, we measure the Workload of each developer involved in a project us-

ing time windows of one month, starting from the date in which the developer

joined the project (i.e., performed the first commit). The Workload of a developer

during one month is measured in terms of the number of commits she performed

in that month. We are aware that such a measure (i) is an approximation because

different commits can require different amount of work; and (ii) a developer could

also work on other projects. When analyzing a smell-introducing commit per-

formed by a developer d during a month m, we compute the workload distribu-

tion for all developers of the project at m. Then, given Q1 and Q3, the first and the

third quartile of such distribution, respectively, we assign: low as Workload tag if

7The thesis’ author was responsible of this task.
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the developer performing the commit had a workload lower than Q1, medium if

Q1  workload < Q3, high if the workload was higher than Q3.

The Ownership tag is assigned if the developer performing the smell-introducing

commit is the owner of the file on which the smell has been detected. As defined

by Bird et al. [147], a file owner is a developer responsible for more than 75%

of the commits performed on the file. Lastly, the Newcomer tag is assigned if the

smell-introducing commit falls among the first three commits in the project for the

developer responsible for it.

After assigning all the described tags to each of the 9,164 smell-introducing

commits, we analyzed the results by reporting descriptive statistics of the number

of commits to which each tag type has been assigned. Also, we discuss several

qualitative examples helping to explain our findings.

What is the survivability of code smells?

To address RQ3, we need to determine when a smell has been introduced and

when a smell disappears from the system. To this aim, given a file f , we formally

define two types of commits:

1. last-smell-introducing commit: A commit ci modifying a file f such that, f is

affected by a code smell smellk after commit ci while it was not affected by

smellk before ci. Even if an artifact can become smelly as consequence of

several modifications (see RQ2), in this analysis we are interested in finding

a specific date in which an artifact can actually be considered smelly. To this

aim we consider the latest possible commit before f actually becomes smelly.

Clearly, when a smell is introduced gradually, this commit is not the only

responsible for the smell introduction, but, rather, it represents the “turning

point” of the smell introduction process.

2. smell-removing commit: A commit ci modifying a file f such that f is not af-

fected by a code smell smellk after ci while it was affected by smellk before

ci. Also, in this case, it may happen that the smell can be gradually removed,
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though we take the first commit in which the code smell detector does not

spot the smell anymore.

Based on what has been discussed above, given a code smell smellk, the time

interval between the last-smell-introducing commit and the smell-removing commit

is defined as smelly interval, and determines the longevity of smellk. Given a

smelly interval for a code smell affecting the file f and bounded by the last-smell-

introducing commit ci and the smell-removing commit cj , we compute as proxies for

the smell longevity:

• #days: the number of days between the introduction of the smell (ci.time) and

its fix (cj.time);

• #commits: the number of commits between ci and cj that modified the artifact

f .

These two proxies provide different and complementary views about the sur-

vivability of code smells. Indeed, considering only the #days (or any other time-

based proxy) could lead to misleading interpretations in cases in which a project is

mostly inactive (i.e., no commits are performed) in a given time period. For exam-

ple, suppose that a smell instance smellk is refactored 10 months after its introduc-

tion in the system. The #days proxy will indicate a very high survivability (⇠300

days) for smellk. However, we do not know whether the project was active in such

a time period (and thus, if developers actually had the chance to fix smellk). The

#commits will provide us with such information: If the project was active, it will

concur with the #days proxy in indicating a high survivability for smellk, otherwise

it will “contradict”, showing a low survivability in terms of #commits.

Since we are analyzing a finite change history for a given repository, it could

happen that for a specific file and a smell affecting it we are able to detect the

last-smell-introducing commit but not the smell-removing commit, due to the fact that

the file is still affected by the code smell in the last commit we analyzed. In other

words, we can discriminate two different types of smelly intervals in our dataset:
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1. Closed Smelly Intervals: intervals delimited by a last-smell-introducing commit

as well as by a smell-removing commit;

2. Censored Smelly Intervals: intervals delimited by a last-smell-introducing com-

mit and by the end of the change history (i.e., the date of the last commit we

analyzed).

In total, we identified 1,426 closed smelly intervals and 9,197 censored smelly

intervals. After having collected this data, we answer RQ3 by relying on survival

analysis [139], a statistical method that aims at analyzing and modeling the time

duration until one or more events happen. Such time duration is modeled as a ran-

dom variable and typically it has been used to represent the time to the failure of a

physical component (mechanical or electrical) or the time to the death of a biolog-

ical unit (patient, animal, cell, etc. ) [139]. The survival function S(t) = Pr(T > t)

indicates the probability that a subject (in our case the code smell) survives longer

than some specified time t. The survival function never increases as t increases;

also, it is assumed S(0) = 1 at the beginning of the observation period, and, for

time t ! 1, S(1) ! 0. The goal of the survival analysis is to estimate such a

survival function from data and assess the relationship of explanatory variables

(covariates) to survival time. Time duration data can be of two types:

1. Complete data: the value of each sample unit is observed or known. For ex-

ample, the time to the failure of a mechanical component has been observed

and reported. In our case, the code smell disappearance has been observed.

2. Censored Data: The event of interest in the analysis has not been observed

yet (so it is considered as unknown). For example, a patient cured with a

particular treatment has been alive till the end of the observation window.

In our case, the smell remains in the system until the end of the observed

project history. For this sample, the time-to-death observed is a censored

value, because the event (death) has not occurred during the observation.

Both complete and censored data can be used, if properly marked, to generate

a survival model. The model can be visualized as a survival curve that shows the

55



3.2. Study Design

survival probability as a function of the time. In the context of our analysis, the

population is represented by the code smell instances while the event of interest

is its fix. Therefore, the “time-to-death” is represented by the observed time from

the introduction of the code smell instance, till its fix (if observed in the avail-

able change history). We refer to such a time period as “the lifetime” of a code

smell instance. Complete data is represented by those instances for which the

event (fix) has been observed, while censored data refers to those instances which

have not been fixed in the observable window. We generate survival models us-

ing both the #days and #commits in the smelly intervals as time variables. We

analyzed the survivability of code smells by ecosystem. That is, for each ecosys-

tem, we generated a survival model for each type of code smell by using R and

the survival package8. In particular, we used the Surv type to generate a sur-

vival object and the survfit function to compute an estimate of a survival curve,

which uses Kaplan-Meier estimator [148] for censored data. In the latter, we use

the conf.type=‘‘none’’ argument to specify that we do not want to include

any confidence interval for the survival function. Also, we decided to use the

Kaplan-Meier estimator, a non-parametric survival analysis method, since we can-

not assume a particular distribution of survival times. Such an estimator has been

widely used in the literature, for example to study the longevity of Debian pack-

ages [149] or to analyze when source code becomes dead code (unused code) [150].

We report the survival function for each type of code smell grouped by ecosys-

tem. In addition, we compare the survival curve of artifacts that are born smelly

(i.e., those in which the code smell appears in the commit creating the artifact)

with the survival curve of artifacts that became smelly during maintenance and

evolution activities.

It is important to highlight that, while the survival analysis is designed to deal

with censored data, we perform a cleaning of our dataset aimed at reducing possi-

ble biases caused by censored intervals before running the analysis. In particular,

code smell instances introduced too close to the end of the observed change his-

tory can potentially influence our results, since in these cases the period of time

8https://cran.r-project.org/package=survival

56

https://cran.r-project.org/package=survival


Chapter 3. When and Why Your Code Starts to Smell Bad

needed for their removal is too small for being analyzed. Thus, we excluded from

our survival analysis all censored intervals for which the last-smell-introducing com-

mit was “too close” to the last commit we analyzed in the system’s change history

(i.e., for which the developers did not have “enough time” to fix them). To deter-

mine a threshold suitable to remove only the subset of smell instances actually too

close to the end of the analyzed change history, we study the distribution of the

number of days needed to fix the code smell instance (i.e., the length of the closed

smelly interval) in our dataset and, then, we choose an appropriate threshold (see

Section 3.3.3).

How do developers remove code smells?

In order to understand how code smells disappear from the system, we manually

analyzed a randomly selected set of 979 smell-removing commits. Such a set repre-

sents a 95% statistically significant stratified sample with a 5% confidence interval

of the 1,426 smell-removing commits in our dataset. The strata of such a sample

are represented by (i) the three ecosystems analyzed (i.e., we make sure to consider

a statistically significant sample for each of the three subject ecosystems), and (ii)

the five different code smells considered in our study, i.e., the higher the number of

fixing commits involving a smell type (e.g., Blob), the higher the number of smell-

removing commits involving such a smell type in our manually evaluated sample.

In other words, we determined a sample size (for the desired confidence interval

and significance level) for each combination of smell type and ecosystem, sampled

and manually analyzed accordingly.

To analyze and categorize the type of action performed by the developers that

caused the smell to disappear (e.g., refactoring, code deletion, etc.), we followed

an open coding process. In particular, we randomly distributed the 979 commits

among three of the authors of the corresponding paper9 (⇠326 commits each).

Each of the involved authors independently analyzed the commits assigned to

him by relying on the commit note and the unix diff as shown by GitHub (all sub-

9The thesis’ author was equally involved in this task.
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ject systems are hosted on GitHub). The output of this phase was the assignment

of each smell-removing commit to a given category explaining why the smell disap-

peared from the system (e.g., the smell has been refactored, the code affected by

the smell has been deleted, etc. ). Then, the three authors involved in the clas-

sification discussed their codings in order to (i) double-check the consistency of

their individual categorization, and (ii) refine the identified categories by merging

similar categories they identified or splitting when it was the case.

The output of our open coding procedure is the assignment of the 979 commits

to a category explaining the reason why a specific smell disappeared in a given

commit. We quantitatively and qualitatively discuss such data in our results sec-

tion.

3.3 Analysis of the Results

This section reports the analysis of the results achieved in our study and aims at

answering the four research questions formulated in Section 3.2.

3.3.1 When are code smells introduced?

Figure 3.2 shows the distribution of the number of commits required by each type

of smell to manifest itself. The results are grouped by ecosystems; also, we report

the Overall results (all ecosystems together).

As we can observe in Figure 3.2, in almost all the cases the median number of

commits needed by a smell to affect code components is zero, except for Blob on

Android (median=3) and Complex Class on Eclipse (median=1). In other words,

most of the smell instances (at least half of them) are introduced when a code entity

is added to the versioning system. This is quite surprising finding, considering

the common wisdom that smells are generally the result of continuous maintenance

activities performed on a code component [8].

However, the box plots also indicate (i) the presence of several outliers; and

that (ii) for some smells, in particular Blob and Complex Class, the distribution is
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Figure 3.2: The number of commits required by a smell to manifest itself.

quite skewed. This means that besides smell instances introduced in the first com-

mit, there are also several smell instances that are introduced as a result of several

changes performed on the file during its evolution. In order to better understand

such phenomenon, we analyzed how the values of some quality metrics change

during the evolution of such files.

Table 3.4 presents the descriptive statistics (mean and median) of the slope of

the regression line computed, for each metric, for both smelly and clean files.

Also, Table 3.4 reports the results of the Mann-Whitney test and Cliff’s d effect

size (Large, Medium, or Small) obtained when analyzing the difference between

the slope of regression lines for clean and smelly files. Column cmp of Table 3.4

shows a " (#) if for the metric m there is a statistically significant difference in the

m’s slope between the two groups of files (i.e., clean and smelly), with the smelly

ones exhibiting a higher (lower) slope; a ”�” is shown when the difference is not

statistically significant.

The analysis of the results reveals that for all the smells, but Functional De-
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Table 3.4: RQ1: slope affected vs slope not affected - Mann-Whitney test (adj. p-

value) and Cliff’s Delta (d).

Ecosys. Smell Affected
LOC LCOM WMC RFC CBO NOM NOA

mean med cmp mean med cmp mean med cmp mean med cmp mean med cmp mean med cmp mean med cmp

NO 0.68 0 0.55 0 0.17 0 0.13 0 0.15 0 0.07 0 0.09 0

YES 32.90 12.51 13.80 2.61 3.78 1.81 5.39 3.47 1.34 0.69 1.15 0.57 0.49 0.13

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Blob

Cliff’s d 0.65 (L)

"
0.38 (M)

"
0.53 (L)

"
0.64 (L)

"
0.66 (L)

"
0.51 (L)

"
0.56 (L)

"

NO 0.42 0 0.12 0 0.12 0 0.05 0 0.09 0 0.05 0 0.06 0

YES 4.43 1.68 0.83 0 0.33 0 0.27 0 0.36 0.18 0.17 0 2.60 0.69

p-value <0.01 0.26 0.88 0.86 <0.01 0.71 <0.01
CDSP

Cliff’s d 0.45 (M)

"
0.06 (N)

—

-0.01 (N)

—

-0.01 (N)

—

0.26 (S)

"
0.02 (N)

—

0.78 (L)

"

NO 0.67 0 0.48 0 0.19 0 0.14 0 0.15 0 0.08 0 0.09 0

YES 7.71 6.81 11.16 4.12 2.61 2.20 2.42 1.01 0.33 0.28 0.67 0.50 0.18 0.10

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
CC

Cliff’s d 0.63 (L)

"
0.45 (M)

"
0.76 (L)

"
0.64 (L)

"
0.32 (S)

"
0.67 (L)

"
0.39 (M)

"

NO 0.99 0 0.62 0 0.29 0 0.31 0 0.40 0 0.11 0 0.11 0

YES -10.56 -1.00 -2.65 0 -2.74 -0.60 -3.49 0 0.78 0.49 -1.13 -0.30 -0.91 0

p-value <0.01 <0.01 <0.01 0.02 0.09 <0.01 0.01
FD

Cliff’s d -0.55 (L)

#
-0.49 (L)

#
-0.59 (L)

#
-0.42 (M)

#
0.32 (S)

—

-0.76 (L)

#
-0.45 (M)

#

NO 1.42 0 0.96 0 0.31 0 0.42 0 0.29 0 0.11 0 0.13 0

YES 144.2 31.0 69.17 100.00 10.17 10.00 6.33 5.00 0.67 1.00 3 3 0.16 0

p-value <0.01 <0.01 <0.01 <0.01 0.50 <0.01 0.04

Android

SC

Cliff’s d 0.99 (L)

"
0.98 (L)

"
0.99 (L)

"
0.95 (L)

"
0.22 (S)

—

0.99 (L)

"
0.68 (L)

"

NO 0.40 0 0.42 0 0.13 0 0.13 0 0.05 0 0.05 0 0.03 0

YES 91.82 33.58 384.70 12.40 17.79 4.92 27.61 7.09 2.17 0.50 7.64 1.72 0.77 0.05

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Blob

Cliff’s d 0.92 (L)

"
0.52 (L)

"
0.77 (L)

"
0.74 (L)

"
0.44 (M)

"
0.82 (L)

"
0.22 (S)

"

NO 0.43 0 0.54 0 0.12 0 0.12 0 0.10 0 0.05 0 0.03 0

YES 8.69 2.03 2.44 0 0.61 0 0.59 0 0.55 0.06 0.23 0 3.28 1.07

p-value <0.01 0.28 0.46 0.45 <0.01 0.37 <0.01
CDSP

Cliff’s d 0.63 (L)

"
-0.04 (N)

—

-0.03 (N)

—

0.03 (N)

—

0.25 (S)

"
-0.03 (N)

—

0.86 (L)

"

NO 0.36 0 0.47 0 0.12 0 0.13 0 0.09 0 0.05 0 0.04 0

YES 121.80 25.86 886.50 152.40 31.87 10.36 39.81 7.21 3.45 0.53 13.99 3.56 0.17 0

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02
CC

Cliff’s d 0.81 (L)

"
0.70 (L)

"
0.83 (L)

"
0.74 (L)

"
0.53 (L)

"
0.82 (L)

"
0.23 (S)

"

NO 0.52 0 0.812 0 0.16 0 0.14 0 0.10 0 0.07 0 0.030 0

YES -13.78 -3.32 -5.98 -0.30 -6.16 -1.00 -4.81 -0.52 -0.28 0 -2.82 -0.53 -0.40 0

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
FD

Cliff’s d -0.72 (L)

#
-0.46 (M)

#
-0.66 (L)

#
-0.49 (L)

#
-0.14 (N)

#
-0.67 (L)

#
-0.35 (M)

#

NO 0.54 0 0.11 0 0.11 0 0.12 0 0.14 0 0.04 0 0.04 0

YES 273.00 129.90 232.30 4.50 7.09 6.50 10.81 10.15 0.96 0.92 3.41 3.00 2.29 2.08

p-value <0.01 0.52 <0.01 <0.01 0.12 <0.01 0.02

Apache

SC

Cliff’s d 0.94 (L)

"
0.17 (S)

—

0.91 (L)

"
0.95 (L)

"
0.44 (M)

—

0.94 (L)

"
0.63 (L)

"

NO 0.02 0 0.02 0 -0.01 0 -0.03 0 0.13 0 -0.01 0 0.01 0

YES 69.51 28.15 1208.00 14.71 17.10 2.92 18.15 2.44 0.58 0.01 7.11 1.09 3.11 0.09

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Blob

Cliff’s d 0.86 (L)

"
0.54 (L)

"
0.76 (L)

"
0.65 (L)

"
0.20 (S)

"
0.75 (L)

"
0.50 (L)

"

NO 0.01 0 0.34 0 <-0.01 0 -0.02 0 0.13 0 <-0.01 0 0.01 0

YES 12.58 2.50 749.1 0 2.77 0 0.70 0 0.37 0 2.10 0 4.01 1

p-value <0.01 <0.01 <0.01 <0.01 0.53 <0.01 <0.01
CDSP

Cliff’s d 0.65 (L)

"
0.13 (N)

"
0.16 (S)

"
0.12 (N)

"
0.03 (N)

—

0.18 (S)

"
0.90 (L)

"

NO 0.02 0 0.21 0 -0.01 0 -0.05 0 0.11 0 -0.01 0 0.02 0

YES 57.72 18.00 2349.00 141.70 19.86 4.86 10.46 0.82 0.68 0.01 10.23 1.94 3.10 <0.01

p-value <0.01 <0.01 <0.01 <0.01 0.02 <0.01 <0.01
CC

Cliff’s d 0.82 (L)

"
0.75 (L)

"
0.84 (L)

"
0.54 (L)

"
0.15 (S)

"
0.83 (L)

"
0.42 (M)

"

NO -0.02 0 0.67 0 -0.02 0 -0.02 0 0.13 0 -0.01 0 0.02 0

YES -15.09 -5.40 -5.23 -0.95 -5.15 -1.71 -4.06 -0.60 -0.16 0.16 -2.39 -0.60 -0.35 0

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.88
FD

Cliff’s d -0.72 (L)

#
-0.61 (L)

#
-0.71 (L)

#
-0.51 (L)

#
0.23 (S)

"
-0.74 (L)

#
-0.01 (N)

—

NO 0.07 0 1.19 0 0.02 0 -0.06 0 0.15 0 -0.01 0 0.02 0

YES 114.40 42.74 698.4 137.3 16.65 4.03 9.47 0.03 1.37 0 6.44 2.39 9.30 1.17

p-value <0.01 <0.01 <0.01 <0.01 0.97 <0.01 <0.01

Eclipse

SC

Cliff’s d 0.92 (L)

"
0.52 (L)

"
0.61 (L)

"
0.44 (M)

"
0.01 (N)

—

0.51 (L)

"
0.65 (L)

"

NO 0.25 0 0.25 0 0.07 0 0.06 0 0.09 0 0.02 0 0.02 0

YES 73.76 29.14 849.90 9.57 16.26 3.30 20.17 3.04 1.15 0.20 6.81 1.12 2.15 0.08

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Blob

Cliff’s d 0.87 (L)

"
0.52 (L)

"
0.74 (L)

"
0.67 (L)

"
0.32 (S)

"
0.75 (L)

"
0.42 (M)

"

NO 0.26 0 0.43 0 0.07 0 0.06 0 0.11 0 0.03 0 0.02 0

YES 9.36 2.10 290.50 0 1.39 0 0.57 0 0.44 0 0.94 0 3.42 1.00

p-value <0.01 0.3 0.04 0.02 <0.01 0.01 <0.01
CDSP

Cliff’s d 0.61 (L)

"
0.05 (N)

—

0.05 (N)

"
0.05 (N)

"
0.17 (S)

"
0.06 (N)

"
0.87 (L)

"

NO 0.21 0 0.34 0 0.06 0 0.04 0 0.10 0 0.02 0 0.03 0

YES 63.00 12.60 1573.00 46.81 19.36 3.81 15.68 1.93 1.25 0.18 9.29 1.40 1.88 0.01

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
CC

Cliff’s d 0.79 (L)

"
0.69 (L)

"
0.82 (L)

"
0.61 (L)

"
0.30 (S)

"
0.81 (L)

"
0.39 (M)

"

NO 0.29 0 0.75 0 0.08 0 0.07 0 0.12 0 0.03 0 0.02 0

YES -14.09 -4.00 -5.59 -0.50 -5.67 -1.37 -4.50 -0.54 -0.19 0 -2.60 -0.57 -0.40 0

p-value <0.01 <0.01 <0.01 <0.01 0.75 <0.01 <0.01
FD

Cliff’s d -0.71 (L)

#
-0.51 (L)

#
-0.67 (L)

#
-0.49 (L)

#
0.01 (N)

—

-0.69 (L)

#
-0.22 (S)

#

NO 0.17 0 1.02 0 0.04 0 -0.02 0 0.15 0 0.01 0 0.03 0

YES 134.00 36.29 597.0 100.0 15.09 6.34 9.36 1.00 1.27 0 5.84 3.00 7.80 0.57

p-value <0.01 <0.01 <0.01 <0.01 0.49 <0.01 <0.01

Overall

SC

Cliff’s d 0.93 (L)

"
0.52 (L)

"
0.66 (L)

"
0.52 (L)

"
0.06 (N)

—

0.59 (L)

"
0.67 (L)

"
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composition, the files affected by smells show a higher slope than clean files. This

suggests that the files that will be affected by a smell exhibit a steeper growth in

terms of metric values than files that are not becoming smelly. In other words,

when a smell is going to appear, its operational indicators (metric value increases)

occur very fast (not gradually). For example, considering the Apache ecosystem,

we can see a clear difference between the growth of LOC in Blob and clean classes.

Indeed, this latter have a mean growth in terms of LOC characterized by a slope

of 0.40, while the slope for Blobs is, on average, 91.82. To make clear the interpre-

tation of such data, let us suppose we plot both regression lines on the Cartesian

plane. The regression line for Blobs will have an inclination of 89.38�, indicating an

abrupt growth of LOC, while the inclination of the regression line for clean classes

will be 21.8�, indicating less steep increase of LOC. The same happens when con-

sidering the LCOM cohesion metric (the higher the LCOM, the lower the class

cohesion). For the overall dataset, the slope for classes that will become Blobs is

849.90 as compared to the 0.25 of clean classes. Thus, while the cohesion of classes

generally decreases over time, classes destined to become Blobs exhibit cohesion

metric loss orders of magnitude faster than clean classes. In general, the results in

Table 3.4 show strong differences in the metrics’ slope between clean and smelly

files, indicating that it could be possible to create recommenders warning develop-

ers when the changes performed on a specific code component show a dangerous

trend potentially leading to the introduction of a bad smell.

The Functional Decomposition (FD) smell deserves a separate discussion. As

we can see in Table 3.4, the slope of the regression line for files affected by such a

smell is negative. This means that during the evolution of files affected by Func-

tional Decomposition we can observe a decrement (rather than an increment) of

the metric values. The rationale behind such a result is intrinsic in the definition

of this smell. Specifically, one of the symptoms of such a smell is represented by

a class with a single action, such as a function. Thus, the changes that could in-

troduce a Functional Decomposition might be the removal of responsibilities (i.e.,

methods). This clearly results in the decrease of some metrics, such as NOM, LOC

and WMC. As an example, let us consider the class DisplayKMeans of APACHE
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Table 3.5: RQ2: Commit-goal tags to smell-introducing commits. BF: Bug Fixing;

E: Enhancement; NF: New Feature; R: Refactoring. Results are reported in per-

centage.

Smell
Android Apache Eclipse Overall

BF E NF R BF E NF R BF E NF R BF E NF R

Blob 15 59 23 3 5 83 10 2 19 55 19 7 14 65 17 4

CDSP 11 52 30 7 6 63 30 1 14 64 18 4 10 60 26 4

CC 0 44 56 0 3 89 8 0 17 52 24 7 13 66 16 5

FD 8 48 39 5 16 67 14 3 18 52 24 6 16 60 20 4

SC 0 0 100 0 0 81 4 15 8 61 22 9 6 66 17 11

MAHOUT. The class implements the K-means clustering algorithm in its original

form. However, after three commits the only operation performed by the class

was the visualization of the clusters. Indeed, developers moved the actual im-

plementation of the clustering algorithm in the class Job of the package kmeans,

introducing a Functional Decomposition in DisplayKMeans.

Overall, by analyzing Table 3.4 we can conclude that (i) LOC characterizes the

introduction of all the smells; (ii) LCOM, WMC, RFC and NOM characterize all

the smells but Class Data Should be Private; (iii) CBO does not characterize the

introduction of any smell; and (iv) the only metrics characterizing the introduction

of Class Data Should be Private are LOC and NOA.

3.3.2 Why are code smells introduced?

To answer RQ2, we analyzed the percentage of smell-introducing commits classi-

fied according to the category of tags, i.e., commit goal, project status, and developer

status.

Commit-Goal: Table 3.5 reports the percentage of smell-introducing commits as-

signed to each tag of the category commit-goal. Among the three different ecosys-

tems analyzed, results show that smell instances are mainly introduced when de-

velopers perform enhancement operations on the system. When analyzing the
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three ecosystems altogether, for all the considered types of smells the percent-

age of smell-introducing commits tagged as enhancement ranges between 60% and

66%. Note that by enhancement we mean changes applied by developers on exist-

ing features aimed at improving them. For example, a Functional Decomposition

was introduced in the class CreateProjectFromArchetypeMojo of APACHE

MAVEN when the developer performed the “first pass at implementing the feature of

being able to specify additional goals that can be run after the creation of a project from an

archetype” (as reported in the commit log).

Note that when considering enhancement or new feature all together, the per-

centage of smell-introducing commits exceeds, on average, 80%. This indicates, as

expected, that the most smell-prone activities are performed by developers when

adding new features or improving existing features. However, there is also a non-

negligible number of smell-introducing commits tagged as bug fixing (between 6%

and 16%). This means that also during corrective maintenance developers might

introduce a smell, especially when the bug fixing is complex and requires changes

to several code entities. For example, the class SecuredModel of APACHE JENA

builds the security model when a semantic Web operation is requested by the user.

In order to fix a bug that did not allow the user to perform a safe authentication, the

developer had to update the model, implementing more security controls. This re-

quired changing several methods present in the class (10 out of 34). Such changes

increase the whole complexity of the class (the WMC metric increased from 29 to

73) making SecuredModel a Complex Class.

Another interesting observation from the results reported in Table 3.5 is re-

lated to the number of smell-introducing commits tagged as refactoring (between

4% and 11%). While refactoring is the principal treatment to remove smells, we

found 394 cases in which developers introduced new smells when performing

refactoring operations. For example, the class EC2ImageExtension of APACHE

JCLOUDS implements the ImageExtension interface, which provides the meth-

ods for creating an image. During the evolution, developers added methods for

building a new image template as well as a method for managing image layout

options (e.g., its alignment) in the EC2ImageExtension class. Subsequently, a
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developer performed an Extract Class refactoring operation aimed at reorganiz-

ing the responsibility of the class. Indeed, the developer split the original class

into two new classes, i.e., ImageTemplateImpl and CreateImageOptions.

However, the developer also introduced a Functional Decomposition in the class

CreateImageOptions since such a class, after the refactoring, contains just one

method, i.e., the one in charge of managing the image options. This result shows

that refactoring can sometimes lead to unexpected side effects; besides the risk of

introducing faults [124], when performing refactoring operations, there is also the

risk of introducing design problems.

Table 3.6: RQ2: Project-Status tags to smell-introducing commits (in percentage).

Ecosystem Smell

Working on Release Project Startup

One One One
More

One One One
More

Day Week Month Week Month Year

Blob 7 54 35 4 6 3 35 56

CDSP 14 20 62 4 7 17 33 43

Android CC 0 6 94 0 0 12 65 23

FD 1 29 59 11 0 4 71 25

SC 0 0 100 0 0 0 0 100

Blob 19 37 43 1 3 7 54 36

CDSP 10 41 46 3 3 8 45 44

Apache CC 12 30 57 1 2 14 46 38

FD 5 14 74 7 3 8 43 46

SC 21 18 58 3 3 7 15 75

Blob 19 37 43 1 3 20 32 45

CDSP 10 41 46 3 6 12 39 43

Eclipse CC 12 30 57 1 2 12 42 44

FD 5 14 73 8 2 5 35 58

SC 21 18 58 3 1 5 19 75

Blob 15 33 50 2 5 14 38 43

CDSP 10 29 58 3 6 12 39 43

Overall CC 18 28 53 1 4 13 42 41

FD 7 22 66 5 3 7 42 48

SC 16 20 58 6 2 6 17 75

Looking into the ecosystems, the general trend discussed so far holds for Apache

and Eclipse. Regarding Android, we notice something different for Complex Class

and Spaghetti Code smells. In these cases, the smell-introducing commits are

mainly due to the introduction of new features. Such a difference could be due

to the particular development model used for Android apps. Specifically, we

manually analyzed the instances of smells identified in 70 Android apps, and we
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observed that in the majority of the cases classes affected by a smell are those

extending the Android Activity class, i.e., a class extended by developers to

provide features to the app’s users. Specifically, we observed that quite often de-

velopers introduce a Complex Class or a Spaghetti Code smell when adding a

new feature to their apps by extending the Activity class. For example, the

class ArticleViewActivity of the AARD10 app became a Complex Class after

adding several new features (spread across 50 commits after its creation), such as

the management of page buttons and online visualization of the article. All these

changes contributed to increase the slope of the regression line for the RFC metric

of a factor of 3.91 and for WMC of a factor of 2.78.

Table 3.7: RQ2: Developer-Status tags to smell-introducing commits (in percent-

age).

Ecosystem Smell
Workload Ownership Newcomer

High Medium Low True False True False

Blob 44 55 1 73 27 4 96

CDSP 79 10 11 81 19 11 89

Android CC 53 47 0 100 0 6 94

FD 68 29 3 100 0 8 92

SC 100 0 0 100 0 100 0

Blob 67 31 2 64 36 7 93

CDSP 68 26 6 53 47 14 86

Apache CC 80 20 0 40 60 6 94

FD 61 36 3 71 29 7 93

SC 79 21 0 100 0 40 60

Blob 62 32 6 65 35 1 99

CDSP 62 35 3 44 56 9 91

Eclipse CC 66 30 4 47 53 9 91

FD 65 30 5 58 42 11 89

SC 43 32 25 79 21 3 97

Blob 60 36 4 67 33 3 97

CDSP 68 25 7 56 44 11 89

Overall CC 69 28 3 45 55 3 97

FD 63 33 4 67 33 8 92

SC 55 28 17 79 21 15 85

Project status: Table 3.6 reports the percentage of smell-introducing commits as-

10Aard is an offline Wikipedia reader.
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signed to each tag of the project-status category. As expected, most of the smells

are introduced the last month before issuing a release. Indeed, the percentage of

smells introduced more than one month prior to issuing a release is really low

(ranging between 0% and 11%). This consideration holds for all the ecosystems

and for all the bad smells analyzed, thus suggesting that the deadline pressure—

assuming that release dates are planned —could be one of the main causes for

smell introduction. Clearly, such a pressure might also be related to an expected

more intense development activity (and a higher workload) developers are forced

to bear to meet the deadline. Indeed, while we found no correlation in general be-

tween the distribution of commits and the distribution of code smell introduction

(Spearman correlation value = -0.19), we observed a higher frequency of commits

during the last month before a deadline, which tends to increase in the last week

with a peak in the last day. This increasing rate of commits close to the deadline

is also moderately correlated to a slightly increasing rate of code smell introduc-

tion during last month of activity and close to the deadline (Spearman correlation

value = 0.516).

Considering the project startup tag, the results are quite unexpected. Indeed,

a high number of smell instances are introduced few months after the project

startup. This is particularly true for Blob, Class Data Should Be Private, and Com-

plex Class, where more than half of the instances are introduced in the first year of

systems’ observed life history. Instead, Functional Decomposition, and especially

Spaghetti Code, seem to be the types of smells that take more time to manifest

themselves with more than 75% of Spaghetti Code instances introduced after the

first year. This result contradicts, at least in part, the common wisdom that smells

are introduced after several continuous maintenance activities and, thus, are more

pertinent to advanced phases of the development process [8, 5].

Developer status: Finally, Table 3.7 reports the percentage of smell-introducing

commits assigned to each tag of the developer-status category. From the analysis

of the results it is evident that the developers’ workload negatively influences the

quality of the source code produced. On the overall dataset, at least in 55% of cases

the developer who introduced the smell had a high workload. For example, on

66



Chapter 3. When and Why Your Code Starts to Smell Bad

the InvokerMavenExecutor class in APACHE MAVEN a developer introduced

a Blob smell while adding the command line parsing to enable users to alternate

the settings. When performing such a change, the developer had relatively high

workload while working on nine other different classes (in this case, the workload

was classified as high).

Developers who introduce smells are not newcomers, while often they are

owners of smell-related files. This could look like an unexpected result, as the

owner of the file—one of the most experienced developers of the file—is the one

that has the higher likelihood of introducing a smell. However, it is clear that

somebody who performs many commits has a higher chance of introducing smells.

Also, as discussed by Zeller in his book Why programs fail, more experienced de-

velopers tend to perform more complex and critical tasks [151]. Thus, it is likely

that their commits are more prone to introducing design problems.
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(c) Eclipse

Figure 3.3: Distribution of number of days a smell remained in the system before

being removed.

3.3.3 What is the survivability of code smells?

We start by analyzing the data for smells that have been removed from the system,

i.e., those for which there is a closed interval delimited by a last-smell-introducing

commit and smell-removing-commit. Figure 3.3 shows the box plot of the distribu-
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tion of the number of days needed to fix a code smell instance for the different

ecosystems. The box plots, depicted in log-scale, show that while few code smell

instances are fixed after a long period of time (i.e., even over 500 days) most of the

instances are fixed in a relatively short time.

Table 3.8 shows the descriptive statistics of the distribution of the number of

days when aggregating all code smell types considered in our study. We can no-

tice considerable differences in the statistics for the three analyzed ecosystems. In

particular, the median value of such distributions are 40, 101 and 135 days for

Android, Apache and Eclipse projects, respectively.

Table 3.8: Descriptive statistics of the number of days needed a smell remained in

the system before being removed.

Ecosystem Min 1st Qu. Median Mean 3rd Qu. Max.

Android 0 5 40 140.8 196 1261

Apache 0 10 101 331.7 354 3244

Eclipse 0 21 135 435.2 446 5115

While it is difficult to speculate on the reasons why code smells are fixed quicker

in the Android ecosystem than in the Apache and Eclipse ones, it is worth noting

that on one hand Android apps generally have a much smaller size with respect

to systems in the Apache and Eclipse ecosystems (i.e., the average size, in terms of

KLOC, is 415 for Android, while it is 1,417 for Apache and 1,534 for Eclipse), and

on the other hand they have a shorter release cycles if compared with the other

considered ecosystems. Because of these differences we decided to perform sep-

arate survivability analysis for the three ecosystems. As a consequence, we also

selected a different threshold for each ecosystem when excluding code smell in-

stances introduced too close to the end of the observed change history, needed to

avoid cases in which the period of time needed for removing the smell is too short

for being analyzed (see Section 3.2). Analyzing the distribution, we decided to

choose the median as threshold, since it is a central value not affected by outliers,

as opposed to the mean. Also, the median values of the distributions are small

enough to consider discarded smells in the censored interval close to the end of
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the observed change history (if compared for example to the mean time to remove

a smell). Therefore, we used as threshold values 40, 101 and 135 days respectively

for Android, Apache and Eclipse projects. Note that the censored intervals that

we did not exclude were opportunely managed by the survival model.

Figure 3.4 shows the number of modifications (i.e., commits modifying the

smelly file) performed by the developer between the introduction and the removal

of the code smell instance. These results clearly show that most of the code smell

instances are removed after a few commits, generally no more than five commits

for Android and Apache, and ten for Eclipse. By combining what has been ob-

served in terms of the number of days and the number of commits a smell re-

mains in the system before being removed, we can conclude that if code smells are

removed, this usually happens after few commits from their introduction, and in

a relatively short time.
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Figure 3.4: Distribution of number of commits between a smell introduction and

its removal.

Figures 3.5 and 3.6 show the survivability curves for each type of code smell

and for each ecosystem in terms of number of days and number of commits, re-

spectively. Remember that, while the previous analysis was just limited to closed

intervals (i.e., smells that have been removed), here we also consider censored in-

tervals (i.e., smells that have been introduced but not removed until the last day

of the analyzed change history). Overall, the plots show that the survivability of
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Figure 3.5: Survival probability of code smells in terms of the number of days.

code smells is quite high. In particular, after 1,000 days, the survival probability

of a code smell instance (i.e., the probability that the code smell has not been re-

moved yet) is around 50% for Android and 80% for Apache and Eclipse. Looking

at the number of commits, after 2,000 commits the survival probability is still 30%

for Android, 50% for Apache, and 75% for Eclipse.

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

BLOB
CDSBP
COMPLEX CLASS
FD
SPAGHETTI CODE

(a) Android

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

BLOB
CDSBP
COMPLEX CLASS
FD
SPAGHETTI CODE

(b) Apache

0 2000 4000 6000 8000 10000 12000 14000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

0 2000 4000 6000 8000 10000 12000 14000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

0 2000 4000 6000 8000 10000 12000 14000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

0 2000 4000 6000 8000 10000 12000 14000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

0 2000 4000 6000 8000 10000 12000 14000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Commits

Su
rv

iva
l P

ro
ba

bi
lity

BLOB
CDSBP
COMPLEX CLASS
FD
SPAGHETTI CODE

(c) Eclipse

Figure 3.6: Survival probability of code smells in terms of the number of commits.

These results may appear in contrast with respect to what has been previously

observed while analyzing closed intervals. However, this is due to the very high

percentage of unfixed code smells present in the subject systems and ignored in

the closed intervals analysis. Table 3.9 provides an overview of the percentage of
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fixed and unfixed code smell instances found in the observable change history11.

As we can see, the vast majority of code smells (81.4%, on average) are not re-

moved, and this result is consistent across the three ecosystem (83% in Android,

87% in Apache, and 74% in Eclipse). The most refactored smell is the Blob with,

on average, 27% of refactored instances. This might be due to the fact that such a

smell is more visible than others due to the large size of the classes affected by it.

Table 3.9: Percentage of code smells removed and not in the observed change his-

tory.

Smell
Android Apache Eclipse

Removed Not Removed Removed Not Removed Removed Not Removed

Blob 36 64 15 85 31 69

CDSBP 14 86 12 88 17 83

CC 15 85 14 86 30 70

FD 9 91 9 91 10 90

SC 11 89 13 87 43 57

Further insights about the survivability of the smells across the three ecosys-

tems are provided in the survival models (i.e., Figures 3.5 and 3.6). The survival

of Complex Class (blue line) and Spaghetti Code (brown line) is much higher in

systems belonging to the Apache ecosystem with respect to systems belonging to

the Android and Eclipse ecosystems. Indeed, these two smell types are the ones

exhibiting the highest survivability in Apache and the lowest survivability in An-

droid and Eclipse. Similarly, we can notice that the survival curves for CDSBP

(green) and FD (yellow) exhibit quite different shapes between Eclipse (higher

survivability) and the other two ecosystems (lower survivability). Despite these

differences, the outcome that can be drawn from the observation of the survival

models is one and valid across all the ecosystems and for all smell types: the sur-

vivability of code smells is very high, with over 50% of smell instances still “alive” after

1,000 days and 1,000 commits from their introduction.

11As also done for the survival model, for the sake of consistency the data reported in Table 3.9

exclude code smell instances introduced too close to the end of the analyzed change history
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Figure 3.7: Survival probability of CDSBP instances affecting born and not born

smelly artifacts.

Finally, we analyzed differences in the survivability of code smell instances af-

fecting “born-smelly-artifacts” (i.e., code files containing the smell instance since

their creation) and “not-born-smelly-artifacts” (i.e., code files in which the code

smell has been introduced as a consequence of maintenance and evolution activ-

ities). Here there could be two possible scenarios: on the one hand developers

might be less prone to refactor and fix born-smelly-artifacts than not-born-smelly-

artifacts, since the code smell is somehow part of the original design of the code

component. On the other hand, it could also be the case that the initial design

is smelly because it is simpler to realize and release, while code smell removal is

planned as a future activity. Both these conjectures have not been confirmed by

the performed data analysis. As an example, we report the results achieved for

the CDSBP and the Complex Class smell (the complete results are available in our

online appendix [138]).

Figure 3.7 shows the survivability of born-smelly and not-born-smelly artifacts

for the CDSBP instances. In this case, on two of the three analyzed ecosystems

the survivability of born-smelly artifacts is actually higher, thus confirming in part

the first scenario drawn above. However, when looking at the results for Complex

Class instances (Figure 3.8), such a trend is not present in Android and Apache and

it is exactly the opposite in Eclipse (i.e., not-born-smelly-artifacts survive longer
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Figure 3.8: Survival probability of Complex Class instances affecting born and not

born smelly artifacts.

than the born-smelly ones). Such trends have also been observed for the other

analyzed smells and, in some cases, contradictory trends were observed for the

same smell in the three ecosystems (see [138]). Thus, it is not really possible to

draw any conclusions on this point.

Table 3.10: How developers remove code smells.

Category # Commits % Percentage % Excluding Unclear

Code Removal 329 34 40

Code Replacement 267 27 33

Unclear 158 16 -

Code Insertion 121 12 15

Refactoring 71 7 9

Major Restructuring 33 3 4

3.3.4 How do developers remove code smells?

Table 3.10 shows the results of the open coding procedure, aimed at identifying

how developers fix code smells (or, more generally, how code smells are removed

from the system). We defined the following categories:
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• Code Removal. The code affected by the smell is deleted or commented. As

a consequence, the code smell instance is no longer present in the system.

Also, it is not replaced by other code in the smell-removing-commit.

• Code Replacement. The code affected by the smell is substantially rewritten.

As a consequence, the code smell instance is no longer present in the system.

Note that the code rewriting does not include any specific refactoring opera-

tion.

• Code Insertion. A code smell instance disappears after new code is added

in the smelly artifact. While at a first glance it might seem unlikely that the

insertion of new code can remove a code smell, the addition of a new method

in a class could, for example, increase its cohesion, thus removing a Blob class

instance.

• Refactoring. The code smell is explicitly removed by applying one or multi-

ple refactoring operations.

• Major Restructuring. A code smell instance is removed after a significant re-

structuring of the system’s architecture that totally changes several code arti-

facts, making it difficult to track the actual operation that removed the smell.

Note that this category might implicitly include the ones listed above (e.g.,

during the major restructuring some code has been replaced, some new code

has been written, and some refactoring operations have been performed).

However, it differs from the others since in this case we are not able to iden-

tify the exact code change leading to the smell removal. We only know that

it is a consequence of a major system’s restructuring.

• Unclear. The GitHub URL used to see the commit diff (i.e., to inspect the

changes implemented by the smell-removing-commit) was no longer avail-

able at the time of the manual inspection.

For each of the defined categories, Table 3.10 shows (i) the absolute number of

smell-removing-commits classified in that category; (ii) their percentage over the
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total of 979 instances and (iii) their percentage computed excluding the Unclear

instances.

The first surprising result to highlight is that only 9% (71) of smell instances are

removed as a result of a refactoring operation. Of these, 27 are Encapsulate Field refac-

torings performed to remove a CDSBP instance. Also, five additional CDSBP in-

stances are removed by performing Extract Class refactoring. Thus, in these five

cases the smell is not even actually fixed, but just moved from one class to an-

other. Four Extract Class refactorings have been instead performed to remove

four Blob instances. The Substitute Algorithm refactoring has been applied to re-

move Complex Classes (ten times) and Spaghetti code (four times). Other types of

refactorings we observed (e.g., move method, move field) were only represented

by one or two instances. Note that this result (i.e., few code smells are removed

via refactoring operations) is in line with what was observed by Bazrfashan and

Koschke [114] when studying how code clones had been removed by developers:

They found that most of the clones were removed accidentally as a side effect of

other changes rather than as the result of targeted code transformations.

One interesting example of code smell removed using an appropriate refac-

toring operation relates to the class ConfigurationFactory of the APACHE

TOMEE project. The main responsibility of this class is to manage the data and

configuration information for assembling an application server. Until the commit

0877b14, the class also contained a set of methods to create new jars and descrip-

tors for such jars (through the EjbJar and EjbJarInfo classes). In the commit

mentioned above, the class affected by the Blob code smell has been refactored

using Extract Class refactoring. In particular, the developer extracted two new

classes from the original class, namely OpenejbJar and EjbJarInfoBuilder

containing the extra functionalities previously contained in the original class.

The majority of code smell instances (40%) are simply removed due to the dele-

tion of the affected code components. In particular: Blob, Complex Class, and

Spaghetti Code instances are mostly fixed by removing/commenting large code

fragments (e.g., no longer needed in the system). In case of Class Data Should Be

Private, the code smell frequently disappears after the deletion of public fields.
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As an example of code smell removed via the deletion of code fragments, the class

org.apache.subversion.javahl.ISVNClient of the APACHE SUBVERSION

project was a Complex Class until the snapshot 673b5ee. Then, the develop-

ers completely deleted several methods, as explained in the commit message:

“JavaHL: Remove a completely superfluous API”. This resulted in the consequent re-

moval of the Complex Class smell.

In 33% of the cases, smell instances are fixed by rewriting the source code in

the smelly artifact. This frequently occurs in Complex Class and Spaghetti Code

instances, in which the rewriting of method bodies can substantially simplify the

code and/or make it more inline with object-oriented principles. Code Insertion

represents 15% of the fixes. This happens particularly in Functional Decompo-

sition instances, where the smelly artifacts acquire more responsibilities and are

better shaped in an object-oriented flavor. Interestingly, also three Blob instances

were removed by writing new code increasing their cohesion. An example of

Functional Decomposition removed by adding code is represented by the class

ocl.library.executor.ExecutorFragment of ECLIPSE OCL. The original

goal of this class was to provide the description of the properties for the execu-

tion of the plug-in that allows users to parse and evaluate Object Constraint Lan-

guage (OCL) constraints. In the commit b9c93f8 the developers added to the

class methods to access and modify such properties, as well as the init method,

which provides APIs allowing external users to define their own properties. Fi-

nally, in 4% of the cases the smell instance was removed as a consequence of a

major restructuring of the whole system.

3.4 Threats to Validity

The main threats related to the relationship between theory and observation (con-

struct validity) are due to imprecisions/errors in the measurements we performed.

Above all, we relied on DECOR rules to detect smells. Notice that our implemen-

tation uses the exact rules defined by Moha et al. [20], and has been already used

in other our previous work [52]. Nevertheless, we are aware that our results can
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be affected by (i) the thresholds used for detecting code smell instances, and (ii)

the presence of false positives and false negatives.

A considerable increment/decrement of the thresholds used in the detection

rules might determine changes in the set of detected code smells (and thus, in our

results). In our study we used the thresholds suggested in the paper by Moha

et al. [20]. As for the presence of false positives and false negatives, Moha et

al. reported for DECOR a precision above 60% and a recall of 100% on Xerces

2.7.0. As for the precision, other than relying on Moha et al. assessment, we have

manually validated a subset of the 4,627 detected smell instances. This manual

validation has been performed by two authors independently12, and cases of dis-

agreement were discussed. In total, 1,107 smells were validated, including 241

Blob instances, 317 Class Data Should Be Private, 166 Complex Class, 65 Spaghetti

Code, and 318 Functional Decomposition. Such a (stratified) sample is deemed to

be statistically significant for a 95% confidence level and ±10% confidence interval

[152]. The results of the manual validation indicated a mean precision of 73%, and

specifically 79% for Blob, 62% for Class Data Should Be Private, 74% for Complex

Class, 82% for Spaghetti Code, and 70% for Functional Decomposition. In addi-

tion, we replicated all the analysis performed to answer our research questions by

just considering the smell-introducing commits (2,555) involving smell instances

that have been manually validated as true positives. The results achieved in this

analysis (available in our replication package [138]) are perfectly consistent with

those obtained in our work on the complete dataset, thus confirming all our find-

ings. Finally, we are aware that our study can also suffer from the presence of false

negatives. However, (i) the sample of investigated smell instances is pretty large

(4,627 instances), and (ii) the DECOR’s claimed recall is very high.

Another threat related to the use of DECOR is the possible presence of “con-

ceptual” false positive instances [11], i.e., instances detected by the tool as true

positives but irrelevant for developers. However, most of the code smells studied

in this chapter (i.e., Blob, Complex Class and Spaghetti Code) have been shown to be

perceived as harmful by developers [50]. This limits the possible impact of this

12The thesis’ author was equally involved in this task.
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Table 3.11: Metrics used by the detector compared to the metrics evaluated in RQ1.

Code Smell Metrics used by DECOR Metrics used in RQ1 Overlap

Blob
#Methods*, #Attributes* LOC, LCOM*, WMC, RFC, CBO 3 metrics out of 5 used by DECOR. Note that in this case DECOR also uses textual aspects

LCOM*, MethodName, ClassName #Methods*, #Attributes* of the source code that we do not take into account in the context of RQ1.

CDSBP # Public Attributes
LOC, LCOM, WMC, RFC, CBO

–
#Methods, #Attributes

Complex Class WMC

LOC, LCOM, WMC* 1 metric in overlap between the two sets. Note that in the chapter we did not only observe

RFC, CBO the growth of the WMC metric, but we found that other several metrics tend to increase

#Methods, #Attributes over time for the classes that will become smelly (e.g., LCOM and NOA).

Functional # Private Attributes, #Attributes* LOC, LCOM, WMC, RFC, CBO 1 metric in overlap. Also in this case, we found decreasing trends for all the metrics

Decomposition Class name #Methods, #Attributes* used in RQ1, and not only for the one used by DECOR.

Spaghetti Code
Method LOC, #Parameters LOC, LCOM, WMC, RFC, CBO

–
DIT #Methods, #Attributes

threat.

The overlap between the quality metrics used when building the linear regres-

sion models (RQ1) and the metrics used by DECOR for detecting code smells may

bias the findings related to when code smells are introduced. In our empirical

investigation we are not interested in predicting the presence of code smells over

time, but we want to observe whether the trends of quality metrics are different for

classes that will become smelly with respect to those that will not become smelly.

For this reason, the use of indicators that are used by the detector to identify smells

should not influence our observations. However, in most of the cases we avoided

the overlap between the metrics used by DECOR and the ones used in the context

of RQ1. Table 3.11 reports, for each smell, (i) the set of metrics used by the de-

tector, (ii) the set of metrics evaluated in the context of RQ1, and (iii) the overlap

between them. We can note that the overlap between the two sets of metrics is

often minimal or even empty (e.g., in the case of Spaghetti Code). Also, it is worth

noting that the detector uses specific thresholds for detecting smells, while in our

case we simply look for the changes of metrics’ value over time.

As explained in Section 3.2, the heuristic for excluding projects with incomplete

history from the Project startup analysis may have failed to discard some projects.

Also, we excluded the first commit from a project’s history involving Java files

from the analysis of smell-introducing commits, because such commits are likely

to be imports from old versioning systems, and, therefore, we only focused our

attention (in terms of the first commit) on the addition of new files during the ob-

served history period. Concerning the tags used to characterize smell-introducing
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changes, the commit classification was performed by two different authors and

results were compared and discussed in cases of inconsistencies. Also, a second

check was performed for those commits linked to issues (only 471 out of 9,164

commits), to avoid problems due to incorrect issue classification [153, 154].

The analysis of developer-related tags was performed using the Git author in-

formation instead of relying on committers (not all authors have commit privileges

in open source projects, hence observing committers would give an imprecise and

partial view of the reality). However, there is no guarantee that the reported au-

thorship is always accurate and complete. We are aware that the Workload tag

measures the developers’ activity within a single project, while in principle one

could be busy on other projects or different other activities. One possibility to mit-

igate such a threat could have been to measure the workload of a developer within

the entire ecosystem. However, in our opinion, this would have introduced some

bias, i.e., assigning a high workload to developers working on several projects

of the same ecosystem and a low workload to those that, while not working on

other projects of the same ecosystem, could have been busy on projects outside

the ecosystem. It is also important to point out that, in terms of the relationship

between Workload tag and smell introduction, we obtained consistent results across

three ecosystems, which at least mitigates the presence of a possible threat. Also,

estimating the Workload by just counting commits is an approximation. However,

we do not use the commit size because there might be a small commit requiring a

substantial effort as well.

As for RQ3, the heuristic used to assess when a smell has been introduced

and when a smell disappears from the system is to be considered as conservative.

The starting point of the history of a smell is the last-smell-introducing-commit, i.e.,

the final commit leading to the introduction of a smell. As commit removing the

smell, we identified the smell-removing commit, i.e., the commit in which DECOR

did not identify the smell anymore is considered. While other commits that are

subsequent to the smell-removing commit may possibly contribute to the decreasing

of the smelliness of a code element, the selected ending point should be consid-

ered as the one causing the decisive reduction of the smelliness (indeed, after that
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commit DECOR is not able to identify the component as smelly).

The proxies that we used for the survivability of code smells (i.e., the number of

days and the number of commits from their introduction to their removal) should

provide two different views on the survivability phenomenon. However, the level

of activity of a project (e.g., the number of commits per week) may substantially

change during its lifetime, thus, influencing the two measured variables.

When studying the survival and the time to fix code smell instances, we relied

on DECOR to assess when a code smell instance has been fixed. Since we rely

on a metric-based approach, code smell instances whose metrics’ values alternate

between slightly below and slightly above the detection threshold used by DECOR

appear as a series of different code smell instances having a short lifetime, thus

introducing imprecisions in our data. To assess the extent of such imprecisions, we

computed the distribution of a number of fixes for each code file and each type of

smell in our dataset. We found that only between 0.7% and 2.7% (depending on the

software ecosystem) of the files has been fixed more than once for the same type

of code smell during the considered change history. Thus, such a phenomenon

should only marginally impact our data.

Concerning RQ4, we relied on an open coding procedure performed on a sta-

tistically significant sample of smell-removing commits in order to understand how

code smells are removed from software systems. This procedure involved three

of the authors and included open discussion aimed at double checking the classi-

fications individually performed. Still, we cannot exclude imprecision and some

degree of subjectiveness (mitigated by the discussion) in the assignment of the

smell-removing commits to the different fixing/removal categories.

As for the threats that could have influenced the results (internal validity), we

performed the study by comparing classes affected (and not) by a specific type

of smell. However, there can also be cases of classes affected by different types

of smells at the same time. Our investigation revealed that such classes represent

a minority (3% for Android, 5% for Apache, and 9% for Eclipse), and, therefore,

the coexistence of different types of smells in the same class is not particularly

interesting to investigate, given also the complexity it would have added to the
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Table 3.12: Number of censored intervals discarded using different thresholds.

Percentages are reported between brackets.

# Censored Intervals Android Apache Eclipse

Total 708 5780 2709

Discarded using 1st Q. 1 (0.1) 43 (0.7) 7 (0.3)

Discarded using Median 3 (0.4) 203 (3.5) 51 (1.9)

Discarded using 3rd Q. 26 (3.7) 602 (10.0) 274 (10.0)

study design and to its presentation. Another threat could be represented by the

fact that a commit identified as a smell-removing-commit (i.e., a commit which

fixes a code smell) could potentially introduce another type of smell in the same

class. To assess the extent to which this could represent a threat to our study, we

analyzed in how many cases this happened in our entire dataset. We found that

in only four cases a fix of a code smell led to the introduction of a different code

smell type in the same software artifact.

In RQ2 we studied tags related to different aspects of a software project’s life-

time, characterizing commits, developers, and the project’s status itself, but we

are aware that there could be many other factors that could have influenced the

introduction of smells. In any case, it is worth noting that it is beyond the scope

of this work to make any claims related to causation of the relationship between

the introduction of smells and product or process factors characterizing a software

project.

The survival analysis in the context of RQ3 has been performed by excluding

smell instances for which the developers had not “enough time” to fix them, and

in particular censored intervals having the last-smell-introducing commit too close

to the last commit analyzed in the project’s history. Table 3.12 shows the absolute

number of censored intervals discarded using different thresholds. In our analysis,

we used the median of the smelly interval (in terms of the number of days) for

closed intervals as a threshold. As we can observe in Table 3.12, this threshold

allows the removal of a relatively small number of code smells from the analysis.

Indeed, we discarded 3 instances (0.4% of the total number of censored intervals)
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Table 3.13: Descriptive statistics of the number of days of censored intervals.

Ecosystem Min 1st Qu. Median Mean 3rd Qu. Max.

Android 3 513 945 1,026 1,386 2,911

Apache 0 909 1,570 1,706 2,434 5,697

Eclipse 0 1,321 2,799 2,629 4,005 5,151

in Android, 203 instances (3.5%) in Apache and 51 instances (1.9%) in Eclipse.

This is also confirmed by the analysis of the distribution of the number of days

composing the censored intervals, shown in Table 3.13, which highlights how the

number of days composing censored intervals is quite large. It is worth noting

that if we had selected the first quartile as threshold, we would have removed too

few code smells from the analysis (i.e., 1 instance in Android, 43 in Apache, and

7 in Eclipse). On the other hand, a more conservative approach would have been

to exclude censored data where the time interval between the last-smell-introducing

commit and the last analyzed commit is greater than the third quartile of the smell

removing time distribution. In this case, we would have removed a higher num-

ber of instances with respect to the median (i.e., 26 instances in Android, 602 in

Apache, and 51 in Eclipse). Moreover, as we show in our online appendix [138],

this choice would have not impacted our findings (i.e., the achieved results are

consistent with what we observed by using the median). Finally, we also analyzed

the proportion of closed and censored intervals considering (i) the original change

history (no instance removed), (ii) the first quartile as threshold, (iii) the median

value as threshold, and (iv) the third quartile as threshold. As shown in our online

appendix [138], we found that the proportion of closed and censored intervals af-

ter excluding censored intervals using the median value, remains almost identical

to the initial proportion (i.e., original change history). Indeed, in most of the cases

the differences is less than 1%, while in only few cases it reaches 2%.

Still in the context of RQ3, we considered a code smell as removed from the

system in a commit ci when DECOR detects it in ci�1 but does not detect it in ci.

This might lead to some imprecisions why computing the lifetime of the smells.

Indeed, suppose that a file f was affected by the Blob smell until commit ci (i.e.,
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DECOR still identify f as a Blob class in commit ci). Then, suppose that f is com-

pletely rewritten in ci+1 and that DECOR still identifies f as a Blob class. While it

is clear that the Blob instance detected in commit ci is different with respect to the

one detected in commit ci+1 (since f has been completely rewritten), we are not

able to discriminate the two instances since we simply observe that DECOR was

detecting a Blob in f at commit ci and it is still detecting a Blob in f at commit

ci+1. This means that (i) we will consider for the Blob instance detected at commit

ci a lifetime longer than it should be, and (ii) we will not be able to study a new

Blob instance. Also, when computing the survivability of the code smells we con-

sidered the smell introduced only after the last-smell-introducing-commit (i.e., we

ignored the other commits contributing to the introduction of the smell). Basically,

our RQ3 results are conservative in the sense that they consider the minimum

survival time of each studied code smell instance.

The main threats related to the relationship between the treatment and the

outcome (conclusion validity) are represented by the analysis method exploited in

our study. In RQ1, we used non-parametric tests (Mann-Whitney) and effect size

measures (Cliff’s Delta), as well as regression analysis. Results of RQ2 and RQ4

are, instead, reported in terms of descriptive statistics and analyzed from purely

observational point of view. As for RQ3, we used the Kaplan-Meier estimator

[148], which estimates the underlying survival model without making any initial

assumption upon the underlying distribution.

Finally, regarding the generalization of our findings (external validity) this is, to

the best of our knowledge, the largest study—in terms of the number of projects

(200)—concerning the analysis of code smells and of their evolution. However, we

are aware that we limited our attention to only five types of smells. As explained

in Section 3.2, this choice is justified by the need for limiting the computational

time since we wanted to analyze a large number of projects. Also, we tried to

diversify the types of smells by including smells representing violations of OO

principles and “size-related” smells. Last, but not least, we made sure to include

smells—such as Complex Class, Blob, and Spaghetti Code—that previous studies

indicated to be perceived by developers as severe problems [50]. Our choice of the
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subject systems is not random, but guided by specific requirements of our under-

lying infrastructure. Specifically, the selected systems are written in Java, since the

code smell detector used in our experiments is able to work with software systems

written in this programming language. Clearly, results cannot be generalized to

other programming languages. Nevertheless, further studies aiming at replicat-

ing our work on other smells, with projects developed for other ecosystems and in

other programming languages, are desirable.

3.5 Conclusion

This chapter presented a large-scale empirical study conducted over the commit

history of 200 open source projects and aimed at understanding when and why bad

code smells are introduced, what is their survaivability, and under which circum-

stances they are removed. These results provide several valuable findings for the

research community:

Lesson 1. Most of the times code artifacts are affected by bad smells since their creation.

This result contradicts the common wisdom that bad smells are generally intro-

duced due to several modifications made on a code artifact. Also, this finding

highlights that the introduction of most smells can simply be avoided by perform-

ing quality checks at commit time. In other words, instead of running smell de-

tectors time-to-time on the entire system, these tools could be used during commit

activities (in particular circumstances, such as before issuing a release) to avoid or,

at least, limit the introduction of bad code smells.

Lesson 2. Code artifacts becoming smelly as consequence of maintenance and evolution

activities are characterized by peculiar metrics’ trends, different from those of clean arti-

facts. This is in agreement with previous findings on the historical evolution of

code smells [15, 52, 12]. Also, such results encourage the development of recom-

menders able to alert software developers when changes applied to code artifacts

result in worrisome metric trends, generally characterizing artifacts that will be

affected by a smell.
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Lesson 3. While implementing new features and enhancing existing ones, the main ac-

tivities during which developers tend to introduce smells, we found almost 400 cases in

which refactoring operations introduced smells. This result is quite surprising, given

that one of the goals behind refactoring is the removal of bad smells [8]. This find-

ing highlights the need for techniques and tools aimed at assessing the impact of

refactoring operations on source code before their actual application (e.g., see the

recent work by Chaparro et al. [155]).

Lesson 4. Newcomers are not necessary responsible for introducing bad smalls, while

developers with high workloads and release pressure are more prone to introducing smell

instances. This result highlights that code inspection practices should be strength-

ened when developers are working under these stressful conditions.

Lesson 5. Code Smells have a high survivability and are rarely removed as a direct con-

sequence of refactoring activities. We found that 80% of the analyzed code smell

instances survive in the system and only a very low percentage of them (9%) is

removed through the application of specific refactorings. While we cannot conjec-

ture on the reasons behind such a finding (e.g., the absence of proper refactoring

tools, the developers’ perception of code smells, etc.), our results highlight the need

for further studies aimed at understanding why code smells are not refactored by

developers. Only in this way it will be possible to understand where the research

community should invest its efforts (e.g., in the creation of a new generation of

refactoring tools).

These lessons learned represent the main input for our future research agenda

on the topic, mainly focusing on designing and developing a new generation of

code quality-checkers, such as those described in Lesson 2, as well as investigat-

ing the reasons behind developers’ lack of motivation to perform refactoring ac-

tivities, and which factors (e.g., intensity of the code smell) promote/discourage

developers to fix a smell instance (Lesson 5). Also, we intend to perform a deeper

investigation of factors that can potentially explain the introduction of code smells,

other than the ones already analyzed in this chapter.
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Chapter 4

On the Diffuseness and the Impact on

Maintainability of Code Smells: A

Large Scale Empirical Investigation

4.1 Introduction

Bad code smells (shortly “code smells” or “smells”) have been defined by Fowler

as symptoms of poor design and implementation choices applied by programmers

during the development of a software project [8]. As a form of technical debt [4],

they could hinder the comprehensibility and maintainability of software systems

[131]. An example of code smell is the God Class, a large and complex class that

centralizes the behavior of a portion of a system and only uses other classes as data

holders. God Classes can rapidly grow out of control, making it harder and harder

for developers to understand them, to fix bugs, and to add new features.

Code smells have been studied by the research community from different per-

spectives. On the one side, researchers have developed methods and tools to de-

tect code smells. Such tools exploit different kinds of approaches, for example ap-

proaches using constraints upon metrics [20, 21, 22, 26], graph-based approaches

[25], historical analysis of source code changes [52], or search-based optimization

techniques in which rules are generated to maximize the detection of some known
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or artificial smells [32, 35].

On the other side, researchers have investigated how relevant code smells are

for developers [9, 50], when and why they are introduced [47], their evolution

over time [14, 13, 15, 12], and their impact on software quality properties, such as

program comprehensibility [18], fault- and change-proneness [17, 16, 41], mainte-

nance effort [19], and, in general, maintainability [10, 9, 119, 42, 43].

Similarly to some previous work [17, 42, 43, 44] this study focuses on the rela-

tionship existing between the occurrence of code smells in software projects and

the software change- and fault-proneness. Specifically, while previous work sug-

gested a significant correlation between smells and change and fault-proneness,

the evidence currently available is limited and suggests the need for further stud-

ies because of:

• Limited size of previous studies: the study of Khomh et al. [17] has been

conducted on four open source systems, while the study by D’Ambros et al.

[41] has been performed on 7 systems. Still, the studies by Li and Shatnawi

[42], Olbrich et al. [43], and Gatrell and Counsell [44] have been conducted

considering the change history of only one software project.

• Detected smells vs. manually validated smells: Previous work which ana-

lyze the impact of code smells on change- and fault-proneness, including the

one by Khomh et al. [17], relied on data obtained from smell detectors. Al-

though such smell detector are often able to achieve a good level of accuracy

it is still possible that their intrinsic imprecision affects the study results.

• Lack of analysis of the observed phenomenon’s magnitude: while previ-

ous work indicated how some smells can be more harmful than others, such

an analysis did not take into account the magnitude of the observed phe-

nomenon. For example, even if a smell type results to be very harmful, this

may or may not be relevant depending on the diffuseness of such a smell in

software projects;

• Lack of analysis of the effect’s magnitude: Previous work indicated that,
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if a class is affected by a code smell, it has more chances to exhibit defects

(or to undergo changes) than other classes. However, no study has observed

the magnitude of such changes and defects, i.e., by addressing the question:

How many defects would exhibit on average a class affected by a code smell

compared with another class affected by a different type of smell, or not af-

fected by any smell?

• Lack of within-artifact analysis: sometimes, a class has intrinsically a very

high change-proneness and even a very high fault-proneness, e.g., because

it plays a core role in the system, or because implements a very complex

feature. Hence, the class may be intrinsically “smelly”, and developers are

aware of that [50, 47]. Instead, there may be classes that becomes smelly

during their lifetime [47], because of maintenance activities. Or else, classes

where the smell has been removed, possibly because of refactoring activities

[49]. For such classes, it is of paramount importance to compare the change-

and fault-proneness when the class contained a smell and when not, in order

to better relate the cause (presence of smell) with the possible effect (change-

or fault-proneness).

• Lack of a temporal relation analysis between smell presence and fault in-

troduction: While previous work correlated the presence of code smells with

high fault- and change-proneness, one may wonder whether the artifact was

smelly when the fault was introduced, or whether the fault was introduced

before the class become smelly.

To cope with the aforementioned issues, this chapter aims at corroborating

previous empirical research on the impact and effect of code smells in software

projects, by analyzing their diffuseness and effect on change- and fault-proneness

on a large set of software projects. In the context of this chapter, the “diffuseness”

of a code smell type (e.g., God Class) refers to the percentage of code components

in a system affected by at least one of its instances. The study has been conducted

on a total of 395 releases of 30 open source systems, and considered 13 different

types of code smells. More specifically, the study aims at investigating:
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1. What is the diffuseness of code smells in open source systems. If the magnitude

of the phenomenon is small—i.e., code smells, or some specific types of code

smells, are poorly diffused—then effort spent in identifying and refactoring

them might not be worthwhile.

2. What is the impact of code smells on maintenance properties, and specifically on

code change- and fault-proneness. We intend to investigate toort what extent

the previous findings reported by Khomh et al. [17] and D’Ambros et al.

[41]—obtained on a small set of software systems and based on smells au-

tomatically identified using code smell detectors—are confirmed on a larger

set of 395 software releases, and considering manually validated smell in-

stances.

To the best of our knowledge, this is to date the largest study investigating

the relationship between the presence of code smells and the source code change-

and fault-proneness. In addition, and to cope with the other limitations of previ-

ous studies mentioned above, this chapter (i) relies on a set of manually-validated

code smells rather than just on the output of tools, (ii) analyzes the fault prone-

ness magnitude in terms of number of code smells, (iii) performs an analysis of

the evolution of classes in order to investigate how the change/fault-proneness

changes when the smell has been removed, and (iv) uses the SZZ algorithm [156]

to determine whether an artifact was already smelly when a fault was induced.

The dataset used in this study is publicly available in our online appendix [157].

4.2 Study Definition and Planning

The goal of this study is to analyze the diffuseness of 13 code smells in real software

applications and their impact on code change- and fault-proneness. It is worth re-

marking that the term “diffuseness”, when associated to a type of code smells,

refers to the percentage of code components in a system affected by at least one

of its instances. Analyzing the diffuseness of code smells is a preliminary anal-

ysis needed to better interpret the smells’ effect on change- and fault-proneness.
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Indeed, some smells might be highly correlated with fault-proneness but rarely

diffused in software projects or vice versa. The 13 considered code smells are re-

ported in Table 4.1 together with a short description.

4.2.1 Research Questions and Planning

In the context of our study we formulated the following three research questions:

• RQ1: What is the diffuseness of code smells in software systems? This research

question is preliminary research question aiming at assessing to what extent

software systems are affected by code smells.

• RQ2: To what extent do classes affected by code smells exhibit a different level of

change- and fault-proneness with respect to classes do not affected by code smells?

Previous work [17] found that classes participating in at least one smell have

a higher chance of being change- and fault-prone than other classes. In this

work we are interested in measuring the change- and fault-proneness mag-

nitude of such classes, in terms of number of changes and of bug fixes.

• RQ3: To what extent does the change- and fault-proneness of classes vary when code

smells are introduced and when they are removed? This research question inves-

tigates whether the change- and fault-proneness of a class increases when a

smell has been introduced, and whether it decreases when the smell has been

refactored. Such an analysis is of paramount importance because a class may

be intrinsically change-prone (and also fault-prone) regardless of whether it

exhibits code smells or not.

To answer our research questions we mined 395 releases of 30 open source

systems searching for instances of the 13 code smells object of our study. Table

4.2 reports the analyzed systems, the number of releases considered for each of

them, and their size ranges in terms of number of classes, number of methods,

and KLOCs. The choice of the systems to consider was not random but guided

by the will to consider object systems having different size (ranging from 0.4 to

868 KLOCs), belonging to different application domains (modeling tools, parsers,
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Table 4.1: The Code Smells considered in our Study

Name Description

Class Data Should Be Private (CDSBP) A class exposing its fields, violating the principle

of data hiding.

Complex Class A class having at least one method having a high

cyclomatic complexity.

Feature Envy A method is more interested in a class other than

the one it actually is in.

God Class A large class implementing different responsibil-

ities and centralizing most of the system process-

ing.

Inappropriate Intimacy Two classes exhibiting a very high coupling be-

tween them.

Lazy Class A class having very small dimension, few meth-

ods and low complexity.

Long Method A method that is unduly long in terms of lines of

code.

Long Parameter List (LPL) A method having a long list of parameters, some

of which avoidable.

Message Chain A long chain of method invocations is performed

to implement a class functionality.

Middle Man A class delegates to other classes most of the

methods it implements.

Refused Bequest A class redefining most of the inherited methods,

thus signaling a wrong hierarchy.

Spaghetti Code A class implementing complex methods inter-

acting between them, with no parameters, using

global variables.

Speculative Generality A class declared as abstract having very few chil-

dren classes using its methods.
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Table 4.2: Systems involved in the study

System #Releases Classes Methods KLOCs

ArgoUML 16 777-1,415 6,618-10,450 147-249

Ant 22 83-813 769-8,540 20-204

aTunes 31 141-655 1,175-5,109 20-106

Cassandra 13 305-586 1,857-5,730 70-111

Derby 9 1,440-1,929 20,517-28,119 558-734

Eclipse Core 29 744-1,181 9,006-18,234 167-441

Elastic Search 8 1,651-2,265 10,944-17,095 192-316

FreeMind 16 25-509 341-4,499 4-103

Hadoop 9 129-278 1,089-2,595 23-57

HSQLDB 17 54-444 876-8,808 26-260

Hbase 8 160-699 1,523-8148 49-271

Hibernate 11 5-5 15-18 0.4-0.5

Hive 8 407-1,115 3,725-9,572 64-204

Incubating 6 249-317 2,529-3,312 117-136

Ivy 11 278-349 2,816-3,775 43-58

Lucene 6 1,762-2,246 13,487-17,021 333-466

JEdit 23 228-520 1,073-5,411 39-166

JHotDraw 16 159-679 1,473-6,687 18-135

JFreeChart 23 86-775 703-8,746 15-231

JBoss 18 2,313-4,809 19,901-37,835 434-868

JVlt 15 164-221 1,358-1,714 18-29

jSL 15 5-10 26-43 0.5-1

Karaf 5 247-470 1,371-2,678 30-56

Nutch 7 183-259 1,131-1,937 33-51

Pig 8 258-922 1,755-7,619 34-184

Qpid 5 966-922 9,048-9,777 89-193

Sax 6 19-38 119-374 3-11

Struts 7 619-1,002 4,059-7,506 69-152

Wicket 9 794-825 6,693-6,900 174-179

Xerces 16 162-736 1,790-7,342 62-201

Total 395 5-4,809 15-37,835 0.4-868
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IDEs, IR-engines, etc), developed by different open source communities (Apache,

Eclipse, etc.), and having different lifetime (from 1 to 19 years).

Table 4.3: The Rules used by our Tool to Detect Candidate Code Smells

Name Description

CDSBP A class having at least one public field.

Complex Class A class having at least one method for which Mc-

Cabe cyclomatic complexity is higher than 10.

Feature Envy All methods having more calls with another

class than the one they are implemented in.

God Class All classes having (i) cohesion lower than the av-

erage of the system AND (ii) LOCs > 500.

Inappropriate Intimacy All pairs of classes having a number of method’s

calls between them higher than the average

number of calls between all pairs of classes.

Lazy Class All classes having LOCs lower than the first

quartile of the distribution of LOCs for all sys-

tem’s classes.

Long Method All methods having LOCs higher than the aver-

age of the system.

LPL All methods having a number of parameters

higher than the average of the system.

Message Chain All chains of methods’ calls longer than three.

Middle Man All classes delegating more than half of the im-

plemented methods.

Refused Bequest All classes overriding more than half of the

methods inherited by a superclass.

Spaghetti Code A class implementing at least two long methods

interacting between them through method calls

or shared fields.

Speculative Generality A class declared as abstract having less than

three children classes using its methods.

The need for analyzing smells in 395 project releases makes the manual detec-

tion of the 13 code smells prohibitively expensive. For this reason, we developed

a simple tool to perform smell detection. The tool outputs a list of candidate code

components (i.e., classes or methods) potentially exhibiting a smell. Then, we man-

ually validated the candidate code smells suggested by the tool. The validation

was performed by two of the authors1 who individually analyzed and classified

as true positive or false positive all candidate code smells. Finally, they performed

an open discussion to resolve possible conflicts and reach a consensus on the de-

tected code smells.

To ensure high recall, our detection tool uses very simple rules that overesti-

1The thesis’ author was equally involved in this task.
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mate the presence of code smells. Such rules, reported in Table 4.3, are inspired to

the rule cards proposed by Moha et al. [20] in DECOR, i.e., our tool considers the

metric profile of classes/methods.

The metrics’ thresholds (needed for discriminating whether a class/method is

affected or not by a smell) have been set lowering the thresholds used by Moha et

al. [20]. Again, this was done in order to detect as many code smell instances as

possible. For example, in the case of the Complex Class smell, we select as candi-

dates all classes having a cyclomatic complexity higher than 10. Such a choice was

driven by recent findings reported by Lopez et al. [158], which found that “a thresh-

old lower than 10 is not significant in Object-Oriented programming when interpreting

the complexity of a method”. As for the other smells, we relied on (i) simple filters,

e.g., in the cases of CDSBP (where we discarded from the manual validation all the

classes having no public attributes) and Feature Envy (we only consider the meth-

ods having more relationships toward another class than with the class they are

contained in), (ii) the analysis of the metrics’ distribution (like in the cases of Lazy

Class, Inappropriate Intimacy, Long Method, and Long Parameter List), or (iii) very

conservative thresholds (e.g., a God Class should not have less than 500 LOCs).

Note that we chose not to use existing detection tools [21, 23, 35, 25, 20, 24,

52] because (i) none of them has ever been applied to detect all the studied code

smells and (ii) their detection rules are generally more restrictive to ensure a good

compromise between recall and precision and thus may miss some smell instances.

To verify this claim, we evaluated the behavior of three existing tools, i.e., DECOR

[20], JDeodorant [25], and HIST [52] on one of the systems used in the empirical

study, i.e., Apache Cassandra 1.1. When considering the God Class smell, unlike

our tool, none of the available tools is able to identify all the eight actual smell

instances we found by manually analyzing the classes of this system. Indeed,

DECOR identifies only one of the actual instances, while JDeodorant and HIST

detect three of them. Therefore, the use of existing tools would have resulted in

a less comprehensive analysis. Of course, our tool pays the higher recall with a

lower precision with respect to other tools. However, this is not a threat for our

study, because the manual validation conducted on the instances automatically
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detected by the tool aims at discarding the false positives, while keeping the true

positive smell instances.

Once collected the data about the presence of each of the 13 code smells in

each of the 395 analyzed software releases we used them to answer our research

questions. Concerning RQ1 we verified what is the diffuseness of the considered

code smells in the analyzed systems. We also verified if there is any correlation

between systems’ characteristics (# Classes, #Methods, and KLOCs) and the pres-

ence of code smells in them. To compute the correlation on each analyzed system

release we used the Spearman rank correlation analysis [159] between the different

systems’ characteristics and the presence of code smells in them. Such an analysis

measures the strength and direction of association between two ranked variables,

and ranges between -1 and 1, where 1 represents a perfect positive linear relation-

ship, -1 represents a perfect negative linear relationship, and values in between

indicate the degree of linear dependence between the considered distributions.

Cohen [159] provided a set of guidelines for the interpretation of the correlation

coefficient. It is assumed that there is no correlation when 0  ⇢ < 0.1, small

correlation when 0.1  ⇢ < 0.3, medium correlation when 0.3  ⇢ < 0.5, and

strong correlation when 0.5  ⇢  1. Similar intervals also apply for negative

correlations.

To answer RQ2 we mined the change history of the 30 systems object of our

study. In particular, to compute the class change-proneness, we extracted the

change logs from their versioning systems in order to identify the set of classes

modified in each commit. Then, we computed the change-proneness of a class Ci

in a release rj as:

change proneness(Ci, rj) = #Changes(Ci) (4.1)

where #Changes(Ci) is the number of changes performed to Ci by developers

during the evolution of the system between the rj�1’s and the rj’s release dates.

Note that in the context of this chapter, the changes are the number of commits

in which a certain class has been involved, while the releases are all the major

releases reported in the repositories of the considered systems.
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As for the fault-proneness, we developed a mining tool to extract the bugs fixed

for each class of the object systems during their change history. All considered

systems exploit Bugzilla2 or Jira3 as issue tracker. Firstly, we identified bug fixing

commits by mining regular expressions containing issue IDs in the change log

of the versioning system, e.g., “fixed issue #ID” or “issue ID”. Secondly, for each

issue ID related to a commit, we downloaded the corresponding issue reports from

their issue tracking system and extracted the following information from them: (i)

product name; (ii) issue type, i.e., whether an issue is a bug, enhancement request,

etc; (iii) issue status, i.e., whether an issue was closed or not; (iv) issue resolution,

i.e., whether an issue was resolved by fixing it, or whether it was a duplicate bug

report, or a “works for me” case; (v) issue opening date; (vi) issue closing date, if

available.

Then, we checked each issue report to be correctly downloaded (e.g., the issue

ID identified from the versioning system commit note could be a false positive).

After that, we used the issue type field to classify the issue and distinguish bug

fixes from other issue types (e.g., enhancements). Finally, we only considered bugs

having Closed status and Fixed resolution. In this way, we restricted our attention

to (i) issues that were related to bugs, and (ii) issues that were neither duplicate

reports nor false alarms. Having bugs linked to the commits fixing them allowed

us to identify which classes were modified to fix each bug. Thus, we computed the

fault-proneness of a class Ci in a release rj as the number of bug fixing activities

to which it has been subjected in the period of time between the rj�1 and the rj

release dates.

Once extracted all the required information, we compare the distribution of

the change- and fault-proneness of classes affected and not by code smells. In par-

ticular, we present boxplots of the change- and fault- proneness distributions of

the two sets of classes and we also statistically compare them through the Mann-

Whitney test [142], a non-parametric test used to evaluate the null hypothesis

stating that it is equally likely that a randomly selected value from one sample

2http://www.bugzilla.org
3https://www.atlassian.com/software/jira
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will be less than or greater than a randomly selected value from a second sam-

ple. The results are intended as statistically significant at ↵ = 0.05. We estimated

the magnitude of the measured differences by using the Cliff’s Delta (or d), a non-

parametric effect size measure [143] for ordinal data. We followed well-established

guidelines to interpret the effect size values: negligible for |d| < 0.10, small for

0.10  |d| < 0.33, medium for 0.33  |d| < 0.474, and large for |d| � 0.474 [143].

It is important to note that the analysis of the fault-proneness might be biased

by the fact that a bug might have been introduced before the introduction of the

code smell. This would lead to an overestimation of the actual number of bug

fixing activities performed on smelly classes in the time period between the re-

leases rj�1 and rj . For this reason, we also analyze the fault-proneness of smelly

classes when only considering bug fixing activities related to bugs introduced af-

ter the smell introduction. More formally, we computed the fault-proneness of a

smelly class Ci in a release rj as the number of changes to Ci aimed at fixing a bug

introduced after the code smell introduction in the period between rj�1 and rj .

To estimate the date in which a bug was likely introduced4, we exploited the

SZZ algorithm5 [156], which is based on the annotation/blame feature of version-

ing systems. In summary, given a bug-fix identified by the bug ID, k, the approach

works as follows:

1. For each file fi, i = 1 . . .mk involved in the bug-fix k (mk is the number of

files changed in the bug-fix k), and fixed in its revision rel-fixi,k, we extract

the file revision just before the bug fixing (rel-fixi,k � 1).

2. Starting from the revision rel-fixi,k � 1, for each source line in fi changed to

fix the bug k the blame feature of Git is used to identify the file revision where

the last change to that line occurred. In doing that, blank lines and lines that

only contain comments are identified using an island grammar parser [9].

This produces, for each file fi, a set of ni,k fix-inducing revisions rel-bugi,j,k,

4The right terminology is “when the bug induced the fix” because of the intrinsic limitations of

the SZZ algorithm, which cannot precisely identify whether a change actually introduced the bug.
5SZZ stays for the last name initials of the three algorithm’s authors.
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j = 1 . . . ni,k. Thus, more than one commit can be indicated by the SZZ

algorithm as responsible for inducing a bug.

By adopting the process described above we are able to approximate the time

periods in which each class was affected by one or more bugs. We excluded from

our analysis all the bugs occurring in a class Ci before it became smelly.

Note that in the context of RQ2 we considered all classes of the object sys-

tems: if a class was smelly on some releases and not-smelly on other releases, it

contributes to both sets of smelly (for the software releases in which it was smelly)

and non-smelly (for the software releases in which it was not smelly) classes. Also,

in this research question we do not discriminate the specific type of smell affecting

a class (i.e., a class is considered smelly if it contains any type of code smell). A

fine grained analysis of the impact of the different smell types of the class change-

and fault-proneness is presented in the next research question.

In RQ3 we exploited the code smells’ oracle we built in the context of our first

study (i.e., the one reporting the code smells affecting each class in each of the

395 considered releases) to identify in which releases of each system a class was

smelly or not smelly. Then, we focused our attention only on classes affected by

at least one smell instance in at least one of the analyzed software releases but

not in all of them. In this way, we can compare their change- and fault-proneness

when they were affected and not affected by smells. Note that in this case we

consider each smell in isolation. For example, suppose that a class C was firstly

affected by the God Class smell between releases ri and ri+1. Then, the smell was

not detected between releases ri+1 and ri+2. Finally, the smell re-appeared between

releases ri+2 and ri+3. We compute the change-proneness of C when it was smelly

by summing up the change-proneness of C in the periods between ri and ri+1 and

between ri+2 and ri+3. Similarly, we computed the change-proneness of C when it

was non-smelly by computing the change-proneness of C in the period between

ri+1 and ri+2. Following the same procedure, we compare the fault-proneness of

classes when they were affected and not by a code smell. As done for RQ2, the

comparison is performed by using boxplots and statistical tests for significance
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(Mann-Whitney test) and effect size (Cliff’s Delta).

4.3 Analysis of the Results

In this section we answers our three research questions.
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Figure 4.1: Absolute number, percentage, and density of code smell instances in

the analyzed systems.
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4.3.1 Diffuseness of code smells (RQ1)

Fig. 4.1 shows the boxplot reporting (i) the absolute number of code smell in-

stances, (ii) the percentage of affected code components (i.e., percentage of affected

classes/methods6), and (iii) the code smell density (i.e., number of code smells per

KLOC) affecting the software systems considered in our study. Note that for the

sake of clarity, we aggregate the results considering all the systems as a unique

dataset.

The boxplots highlight significant differences in the diffusiness of code smells.

The first thing that leaps to the eyes is that code smells like Feature Envy, Message

Chain, and Middle Man are poorly diffused in the analyzed systems. For instance,

across the 395 system releases, the highest number of Feature Envy instances in a

single release (a Xerces release) is 17, leading to a percentage of affected methods of

only 2.3%. We found instances of Feature Envy in 50% of the analyzed 395 releases.

The Message Chain smell is also poorly diffused. It affects 13% of the analyzed

releases and, in the most affected release (a HSQLDB’s release), only four out

of the 427 classes (0.9%) are instances of this smell. Note that in previous work

Message Chain resulted to be the smell having the highest correlation with fault-

proneness [17]. Therefore, the observed results indicate that, although the Message

Chain smell is potentially harmful, its diffusion is fairly limited.

Finally, the last poorly diffused code smell is the Middle Man. 30% of the

395 analyzed releases are affected by at least one of its instances, with eight be-

ing the highest number of instances in a single release (a Cassandra release). In

particular, the classes affected by the Middle Man in Cassandra 0.6 were 8 out of

261 (3%). In this case, all identified Middle Man instances affect classes belong-

ing to the org.apache.cassandra.utils package, grouping together classes

delegating most of their work to classes in other packages. For example, the

HintedHandOffManager class delegates eleven out of the twelve methods it

contains to the StorageService class from the apache.cassandra.service

6Depending on the code smell granularity, we report the percentage of affected classes or meth-

ods.
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package.

Other code smells are instead quite diffused. For example, we found at least

one instance of Long Method in 84% of the analyzed releases (331 out of 395). In

particular, each of these 331 releases is affected, on average, by 44 Long Method

instances with the peak of 212 in an Apache Derby’s release7. We manually ana-

lyzed that release (i.e., 10.1) to understand the reasons behind the presence of so

many Long Method instances. Most of the instances are in the impl.sql.compile

package, grouping together classes implementing methods responsible for the

parsing of code statements written by using the SQL language. Such parsing meth-

ods are in general very complex and long (on average, 259 LOC). For a similar

reason, we found several instances of Long Method in Eclipse Core. Indeed, it

contains a high number of classes implementing methods dealing with the parsing

of the code in the IDE. While we cannot draw any clear conclusion based on the

manual analysis of these two systems, our feeling is that the inherent complexity

of such parsing methods makes it difficult for developers to (i) write the code in a

more concise way, avoiding Long Method code smells, or (ii) remove the smell by

applying, for instance, extract method refactoring.

Another quite diffused code smell is the Spaghetti Code, present in 83% of the

analyzed releases (327 out of 395) with the highest number of instances (54) found

in a JBoss’s release. Other diffused code smells are Speculative Generality (80% of

affected releases), Class Data Should Be Private (77%), Inappropriate Intimacy (71%),

and God Class (65%).

Interestingly, the three smallest systems considered in our study (Hibernate,

jSL, and Sax) do not present any instance of code smell in any of the 31 analyzed

releases. This result might indicate that in small systems software developers are

generally able to better keep under control the code quality, avoiding the introduc-

tion of code smells. To further investigate this point we computed the correlation

between systems’ size (in terms of # Classes, #Methods, and LOCs) and the num-

ber of instances of each code smell (see Table 4.4). As expected, some code smells

have a positive correlation with the size attributes, meaning that the larger the

7Apache Derby is an open source relational database.
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Table 4.4: Correlation between code smell instances and system size.

Code smell ⇢ with ⇢ with ⇢ with

#Classes #Methods LOCs

Class Data Should Be Private 0.72 0.82 0.82

Complex Class 0.49 0.71 0.73

Feature Envy -0.07 -0.02 0.01

God Class 0.50 0.76 0.82

Inappropriate Intimacy -0.02 0.02 0.08

Lazy Class 0.20 0.32 0.32

Long Method 0.47 0.72 0.79

Long Parameter List -0.12 -0.09 -0.05

Message Chain -0.10 -0.03 0.03

Middle Man 0.07 0.19 0.18

Refused Bequest 0.74 0.82 0.81

Spaghetti Code 0.69 0.74 0.75

Speculative Generality 0.85 0.78 0.77

In Italic the medium correlations, in bold the strong correlations

system, the higher the number of code smell instances in it. There are also several

code smells for which this correlation does not hold (i.e., Feature Envy, Inappropri-

ate Intimacy, Long Parameter List, Message Chain, and Middle Man). With the excep-

tion of Long Parameter List, all these smells are related to “suspicious” interactions

between the classes of the system (e.g., the high coupling represented by the In-

appropriate Intimacy smell). It is reasonable to assume that the interactions of such

classes is independent from the systems’ size and mainly related to correct/wrong

design decisions.

We also compute the code smell density as the number of smell instances per

KLOC in each of the 395 analyzed releases (see bottom part of Fig. 4.1). The

results confirm that the Long Method is the most diffused smell, having the the

highest average density (i.e., 28 instances per KLOC). Also Refused Bequest and

Complex Class smells, i.e., the code smells having the highest percentage of affected
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Table 4.5: RQ1: Diffuseness of the studied code smells.

Code smell % affected avg. number max number
Diffuseness

releases of instances of instances

Long Method 84% 44 212 High

Spaghetti Code 83% 12 54 High

Speculative Generality 80% 11 65 High

Class Data Should Be Private 76% 12 65 High

Inappropriate Intimacy 71% 4 34 High

God Class 65% 5 26 Medium

Refused Bequest 58% 11 55 Medium

Complex Class 56% 9 35 Medium

Long Parameter List 47% 16 77 Medium

Feature Envy 50% 3 17 Low

Lazy Class 47% 5 21 Low

Middle Man 30% 2 8 Low

Message Chain 13% 2 4 Low

code components, are confirmed to be quite diffused in the studied systems. All

the other smells seem to have diffuseness trends similar to the ones previously

discussed.

Table 4.5 classifies the studied code smells on the basis of their diffuseness in

the releases subject of our study. The “% of affected releases” column reports the

percentage of analyzed releases in which we found at least one instance of a spe-

cific smell type. For example, a smell like Long Method affects 84% of releases, i.e.,

395*0.84=332 releases.

4.3.2 Change- and fault-proneness of classes affected/not affected

by code smells (RQ2)

Fig. 4.2 shows the boxplots of change-proneness for classes affected/not affected

by code smells. Our results confirm the findings reported by Khomh et al. [17],

showing that classes affected by code smells have a higher change-proneness than
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Figure 4.2: Change-proneness of classes affected and not by code smells

other classes. Indeed, the median change proneness for classes affected by code

smells (32) is almost three times higher with respect to the median change prone-

ness of the other classes (12). For example, the Eclipse class IndexAllProject

affected by the Long Method smell (in its execute method) has been modified 77

times during the time period between the release 8 (2.1.3) and 9 (3.0), while the

median value of changes for classes not affected by any code smell is 12. Looking

closer to the executemethod, we found that during the change history of the sys-

tem its number of lines varied between 671 and 968 due to the addition of several

features. The results of the Mann-Whitney and Cliff tests highlight a statistically

significant difference in the change-proneness of classes affected and not affected

by code smell (p-value<0.001) with a large effect size (d=0.68).

Also in the case of the fault-proneness the results show important differences

between classes affected and not affected by code smells, even if such differences

are less marked than those observed for the change-proneness (see Fig. 4.3). The

median value of the number of bugs fixed on classes not affected by smells is

3 (third quartile=5), while the median for classes affected by code smells is 9—

+300%—(third quartile=12). The results confirm what already observed by Khomh

104



Chapter 4. On the Diffuseness and the Impact on Maintainability of Code Smells

●● ● ●

sm
el

ly
cl

as
se

s
no

n−
sm

el
ly

cl
as

se
s

0 5 10 15 20 25 30 35

# defects

Figure 4.3: Fault-proneness of classes affected and not affected by code smells.
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Figure 4.4: Fault-proneness of classes affected and not affected by code smells

when considering the bugs introduced after the smell introduction only.

et al. [17]. The observed difference is statistically significant (p-value<0.001) with

a medium effect size (d=0.41).

When only considering the bugs induced after the smell introduction, the re-
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sults still confirm previous findings. Indeed, as shown in Fig. 4.4, smelly classes

still have a much higher fault-proneness with respect to non-smelly classes. In

particular, the median value of the number of bugs fixed in non-smelly classes

is 2 (third quartile=5), as compared to the 9 of smelly classes (third quartile=12).

The difference is statistically significant (p-value<0.001) with a large effect size

(d=0.82).

This result can be explained by the findings reported in the work by Tufano et

al. [47], in which the authors show that most of the smells are introduced during

the very first commit involving the affected class (i.e., when the class is added for

the first time to the repository). As a natural implication, most of the bugs intro-

duced in smelly classes are introduced after the code smell appearance (because

in most of cases, the smell is there since the class creation). This conclusion is also

supported by the fact that in our dataset only 21% of the bugs related to smelly

classes are introduced before the smell introduction.

Figure 4.5: Change-proneness of classes affected by different number of code

smells.

While the analysis carried out until now clearly highlighted a trend in terms

of change- and fault- proneness of smelly and non-smelly classes, it is important

to note that a smelly class could be affected by one or more smells. For this rea-

son, we performed an additional analysis to verify how the change- and fault-
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proneness of classes varies when considering classes affected by zero, one, two,

and three code smells. Note that in our dataset there are no classes affected by

more than three smells in the same system release. Moreover, if a class was af-

fected by two code smells in release rj�1 and by three code smells in release rj , its

change- (fault-) proneness between releases rj�1 and rj contributed to the distribu-

tion representing the change- (fault-) proneness of classes affected by two smells

while its change- (fault-) proneness between releases rj and rj+1 contributed to the

distribution representing the change- (fault-) proneness of classes affected by three

smells. Fig. 4.5 reports the change-proneness of the four considered sets of classes,

while Fig. 4.6 and Fig. 4.7 depict the results achieved for fault-proneness.

In terms of change-proneness, the trend depicted in Fig. 4.5 shows that the

higher the number of smells affecting a class, the higher its change-proneness. In

particular, the median number of changes goes from 12 for non-smelly classes, to

22 for classes affected by one smell (+83%), 32 for classes affected by two smells

(+167%), and up to 54 for classes affected by three smells (+350%). Table 4.6 re-

ports the results of the Mann-Whitney test and of the Cliff’s delta obtained when

comparing the change-proneness of these four categories of classes. Since we per-

formed multiple tests, we adjusted our p-values using the Holm’s correction pro-

cedure [160]. This procedure sorts the p-values resulting from n tests in ascending

order, multiplying the smallest by n, the next by n� 1, and so on.

Table 4.6: Change-proneness of classes affected by a different number of code

smells: Mann-Whitney test (adj. p-value) and Cliff’s Delta (d).

Test adj. p-value d

zero smells vs one smell <0.001 0.53 (Large)

zero smells vs two smells <0.001 0.80 (Large)

zero smells vs three smells <0.001 0.89 (Large)

one smell vs two smells <0.001 0.42 (Medium)

one smell vs three smells <0.001 0.84 (Large)

two smells vs three smells <0.001 0.72 (Large)
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Figure 4.6: Fault-proneness of classes affected by different number of code smells.

The achieved results show that (i) classes affected by a lower number of code

smells always exhibit a statistically significant lower change-proneness than classes

affected by a higher number of code smells, and (ii) the effect size is always large

with the only exception of the comparison between classes affected by one smell

and classes affected by two smells, for which the effect size is medium.

Table 4.7: Fault-proneness of classes affected by a different number of code smells:

Mann-Whitney test (adj. p-value) and Cliff’s Delta (d).

Test adj. p-value d

zero smells vs one smell <0.001 0.74 (Large)

zero smells vs two smells <0.001 0.74 (Large)

zero smells vs three smells <0.001 0.89 (Large)

one smell vs two smells <0.001 0.14 (Small)

one smell vs three smells <0.001 0.53 (Large)

two smells vs three smells <0.001 0.40 (Medium)

Similar observations can be made for what concerns the fault-proneness. Fig.

4.6 depicts the boxplots reporting the fault-proneness of classes affected by zero,

one, two, and three code smells. With the increase in the number of code smells,

the median fault-proneness of the classes grows from 3 for the non-smelly classes
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Figure 4.7: Fault-proneness of classes affected by different number of code smells

when considering only the bugs induced after the smell introduction.

up to 12 (+300%) for the classes affected by three code smells.

Table 4.8: Fault-proneness of classes affected by a different number of code smells

when considering only bugs induced after the smell introduction: Mann-Whitney

test (adj. p-value) and Cliff’s Delta (d).

Test adj. p-value d

zero smells vs one smell <0.001 0.75 (Large)

zero smells vs two smells <0.001 0.71 (Large)

zero smells vs three smells <0.001 0.95 (Large)

one smell vs two smells <0.001 0.19 (Small)

one smell vs three smells <0.001 0.61 (Large)

two smells vs three smells <0.001 0.43 (Medium)

The results of the statistical analysis reported in Table 4.8 confirm the signifi-

cant difference in the fault-proneness of classes affected by a different number of

code smells, with a large effect size in most of the comparisons.

When looking at the boxplots of Fig. 4.7, which refers to the analysis of the

fault-proneness performed considering only the bugs introduced after the smell
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introduction, we can confirm previous findings. Indeed, the higher the number of

code smells affecting a class the higher its fault-proneness. The significant differ-

ences are also confirmed by the statistical tests reported in Table 4.8.

4.3.3 Change- and fault-proneness of classes when code smells

are introduced and removed (RQ3)

Fig. 4.8 shows, for each considered code smell types, a pair of boxplots reporting

the change-proneness of the same set of classes during the time period in which

they were affected (S in Fig. 4.8) and not affected (NS in Fig. 4.8) by that specific

code smell.

In all pairs of boxplots a recurring pattern can be observed: when the classes

are affected by the code smell they generally have a higher change-proneness than

when they are not affected. This result holds for all code smells but Middle Man

(MM), Lazy Class (LC), Feature Envy (FE), and Class Data Should Be Private (CDSBP).

For classes being affected by a God Class (GC) smell we can observe an increase

of +283% of the change-proneness median value (46 vs 12). The case of the Base64

class belonging to the Elastic Search system is particularly representative: when

affected by the God Class smell, the developers modified it 87 times on average (the

average is computed across the 5 releases in which this class was smelly); instead,

when the class was not affected by the code smell, the developers modified it only

10 times on average (the class was not smelly in 3 releases).

Similar results can be observed for the Complex Class (CC) smell, with the me-

dian change-proneness of classes equal to 55 in the time period in which they are

affected by this smell, compared to 34 when they are non-smelly classes. For exam-

ple, when the Scanner class of the Eclipse Core project was affected by this smell,

it was modified 95 times on average (across the 18 releases in which the class was

smelly) as opposed to the 27 average changes observed across the 11 releases in

which it was not smelly.

The discussion is quite similar for code smells related to errors in the applica-

tions of Object Oriented principles. For example, for classes affected by Refused
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Figure 4.8: Change-proneness of classes affected by a code smell compared to the

change-proneness of the same classes during the time period in which they were

not affected by a code smell.

Bequest (RB) the median change-proneness goes from 43 (when they are affected)

down to 26 (when thet are not affected). The case of the class ScriptWriterBase
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of the HSQLDB project is particularly interesting. This class has been involved in

52 changes, on average, during the time period in which it was affected by RB

(13 releases), while the average number of changes decreased to 9 during the time

period in which it was not smelly (4 releases).

Figure 4.9: Fault-proneness of classes affected by a code smell compared to the

fault-proneness of the same classes during the time period in which they were not

affected by a code smell.
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It is also interesting to understand why some code smells reduce the change-

proneness. For the Lazy Class smell this result is quite expected. Indeed, by defi-

nition, this smell arises when a class has small size, few methods, low complexity

and it is used rarely from the other classes; in other words, as stated by Fowler

“the class isn’t doing enough to pay for itself” [8]. Removing this smell could mean

increasing the usefulness of the class by implementing, for example, new features

in it. This is likely going to increase the class change-proneness. Also, the removal

of a Middle Man (a class delegating most of its responsibilities) is expected to in-

crease the change-proneness of classes, since the non-smelly class will implement,

without delegation, a set of responsibilities that are likely to be maintained by de-

velopers, thus triggering new changes.

Results of the fault-proneness are shown in Fig. 4.9. Here, the differences be-

tween the time periods the classes are affected and not by code smells are less

evident, but still present, especially for Refused Bequest (RB), Inappropriate Intimacy

(II), God Class (GC), and Feature Envy (FE). The most interesting case is the FE,

for which we observed that the fault-proneness increases by a factor of 8 when

this code smell affects the classes. A representative example is that of the method

internalGetRowKeyAtOrBefore of the class Memcache of the project Apache

HBase. This method did not present faults when it was not affected by any smell

(i.e., the method was not affected by smell in 4 releases of the system). However,

when the method started to be too coupled with the class HStoreKey, it was af-

fected by up to 7 faults. The reason for this growth is due to the increasing cou-

pling of the method with the class HStoreKey. Indeed, a HBase developer on the

issue tracker8 commented on the evolution of this method: “Here’s a go at it. The

logic is much more complicated, though it shouldn’t be too impossible to follow”.

For all other smells we did not observe any strong difference in the fault-

proneness of the classes when comparing the time periods during which they were

affected and not affected by code smells. While this result might seem a contradic-

tion with respect to what observed in RQ2 and in the previous study by Khomh et

al. [17], our interpretation is that classes that have been fault-prone in the past will

8https://issues.apache.org/jira/browse/HBASE-514
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Figure 4.10: SZZ Analysis: Fault-proneness of classes affected by a code smell

compared to the fault-proneness of the same classes during the time period in

which they were not affected by a code smell.

still continue to be fault-prone, even if a smell has been removed. Moreover, since a

smell removal requires a change to the code, it can have side effects like any other

change, thus possibly affecting the fault-proneness independently on the smell.
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Table 4.9: ORs of independent factors when building logistic model. Statistically

significant ORs are reported in bold face.

Dependent Variable Smell Presence Size Their Interaction

Change-proneness 4.46 1.7 8.41

Defect-proneness 1.74 0.93 2.11

This is also in agreement with previous studies that used the past fault-proneness

history of classes to predict their future faults [161]. In essence, there seems to be

no direct cause-effect relationships between the presence of code smells and the

class fault-proneness. Instead, those are two different negative phenomena that

tend to occur in some classes of a software project.

When analyzing only the bugs introduced after the smell appearance (Fig.

4.10), we can observe that also in this case the results are in line with those reported

above. Indeed, there are no relevant changes between the findings achieved using

or not such a filtering (based on the SZZ algorithm). As explained before, this is

simply due to the fact that most of the code smells are introduced during the first

commit of a class in the repository.

Finally, it is important to point out that our analyses might be influenced by

several confounding factors. For instance, it is likely that larger classes are more

likely to change over time and to be subject to bug-fix activities. To verify the in-

fluence of the size attribute on the results achieved in the context of RQ2 and RQ3

we built logistic regression models [162] relating the two phenomena, i.e., change-

and fault-proneness, with independent variables represented by the presence of a

smell, the size of the component, and their interaction. Table 4.9 reports the ORs

achieved from such an analysis. Statistically significant values, i.e., those for which

the p-value is lower than 0.05, are reported in bold face. From this analysis, we can

notice that the presence of code smells is significantly related to the increase of

change-proneness. The size of code components also affects this phenomenon,

even if it is to a lower extent, while the interaction of smell presence and size has

a strong impact on the change-proneness. In terms of fault-proneness, only the
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Figure 4.11: Change-proneness of smelly classes grouped by their size.
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Figure 4.12: Fault-proneness of smelly classes grouped by their size.
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interaction between the independent variables is statistically significant. This con-

firms what we observed in RQ3: Code smells are not necessarily the direct cause

of the class fault-proneness.

Moreover, to be sure that the results achieved in the context of RQ2 and RQ3

were not simply due to a reflection of code size, we re-ran our analysis by consid-

ering the change- and the fault-proneness of smelly and non-smelly classes having

different size. In particular:

1. We grouped together smelly classes with similar size by considering their

distribution in terms of size. Specifically, we compute the distribution of the

lines of code of classes affected by code smells. This first step results in the

construction of (i) the group composed by all the classes having a size lower

than the first quartile of the distribution of the size of the classes, i.e., small

size; (ii) the group composed by all the smelly classes having a size between

the first and the third quartile of the distribution, i.e., medium size; and (iii)

the group composed by the smelly classes having a size larger than the third

quartile of the distribution of the size of the classes, i.e., large size;

2. We applied the same strategy for grouping small, medium, and large non-

smelly classes; and

3. We computed the change- and the fault-proneness for each class belonging

to the six groups, in order to investigate whether smelly-classes are more

change- and fault-prone regardless from their size.

The obtained results are shown in Figures 4.11 and 4.12. As it is possible to ob-

serve, the presence of code smells increase both the change- and fault-proneness

of classes, regardless from their size. Thus, we can confirm the findings shown

before and claim that code smells actually represent a serious threat for the main-

tainability of software systems.

4.4 Threats to Validity

This section discusses the threats that could affect the validity of our study.
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The main threat related to the relationship between theory and observation

(construct validity) are due to imprecisions/errors in the measurements we per-

formed. Above all, we relied on a tool we built and made publicly available in

our online appendix [157] to detect candidate code smell instances. Our tool ex-

ploits conservative detection rules aimed at ensuring high recall at the expense of

low precision. Then, two of the authors manually validated the identified code

smells to discard false positives. Still, we cannot exclude the presence of false

positives/negatives in our dataset.

We assessed the change- and fault-proneness of a class Ci in a release rj as

the number of changes and the number of bug fixes Ci was subject to in the time

period t between the rj and the rj+1 release dates. This implies that the t’s length

could play a role in the change- and fault-proneness of classes (i.e., the longer t,

the higher the classes’ change- and fault-proneness). However, it is worth noting

that:

1. This holds for both smelly and non-smelly classes, thus reducing the bias of

t as a confounding factor.

2. To mitigate such a threat we completely re-run our analysis by considering

a normalized version of class change- and fault-proneness. In particular, we

computed the change-proneness of a class Ci in a release rj as:

change proneness(Ci, rj) =
#Changes(Ci)

#Changes(rj)

where #Changes(Ci) is the number of changes performed to Ci by develop-

ers during the evolution of the system between the rj�1’s and the rj’s release

dates and #Changes(rj) is the total number of changes performed on the

whole system during the same time period. In a similar way, we computed

the fault-proneness of a class Ci in a release rj as:

fault proneness(Ci, rj) =
NOBF (Ci)

NOBF (rj)

where NOBF (Ci) is the number of bug fixing activities performed on Ci by

developers between the rj�1’s and the rj’s release dates and NOBF (rj) is the

total number of bugs fixed in the whole system during the same time period.
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The achieved results are consistent with what observed in Section 4.3.

In addition, we cannot exclude imprecisions in the classes’ fault-proneness

measurement due to misclassification of issues (e.g., an enhancement classified as

a bug) in the issue-tracking systems [153]. At least, the systems we consider use

an explicit classification of bugs, distinguishing them from other issues.

To investigate whether there is a temporal relationship between the occurrence

of a code smell and a bug induction, we relied on the SZZ algorithm [156]. We

are aware that such an algorithm only gives a rough approximation of the set of

commits inducing a fix, because (i) of the intrinsic limitation of the line-based dif-

ferencing of git, and (ii) because in some cases a bug can be fixed without modify-

ing the lines inducing it, e.g., by adding a workaround or in general changing the

control-flow elsewhere.

The main threats related to the relationship between the treatment and the out-

come (conclusion validity) might be represented by the analysis method exploited

in our study. We discuss our results by presenting descriptive statistics and using

proper non-parametric correlation tests (p-values were properly adjusted when

multiple comparisons were performed). In addition, the practical relevance of the

differences observed in terms of change- and fault-proneness is highlighted by

effect size measures.

Threats to internal validity concern factors that could influence our observa-

tions. The fact that code smells disappear, may or may not be related to refac-

toring activities occurred between the observed releases. In other words, other

changes could have produced such effects. We are aware that we cannot claim

a direct cause-effect relation between the presence of code smells and the fault-

and change-proneness of classes, which can be influenced by several other factors.

In particular, our observations may be influenced by the different development

phases encountered over the change history as well as by developer-related fac-

tors (e.g., her experience and workload). Also, we acknowledge that such mea-

sures could simply reflect the “importance” of classes in the analyzed systems

and, in particular, their central role in the software evolution process. For exam-

ple, we expect classes controlling the business logic of a system to also be the ones
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more frequently modified by developers (high change-proneness) and, as a con-

sequence, subject to the introduction of bugs (high fault-proneness). It is possible

that such classes are also the ones more frequently affected by code smells, thus

implying high change- and fault-proneness of smelly classes. An in-depth analysis

of how such factors influencing the change- and fault-proneness of classes is part

of our future agenda.

Finally, regarding the generalization of our findings (external validity) this is,

to the best of our knowledge, the largest study—in terms of number of software

releases (395), and considered code smell types (13)—concerning the diffuseness

of code smells and their impact on maintainability properties. However, we are

aware that we limited our attention only to Java systems, due to limitations of

the infrastructure we used (e.g., the code smell detection tool only works on Java

code). Further studies aiming at replicating our work on systems written in other

programming languages are desirable. Moreover, we focused our attention on

open-source systems only, and we cannot speculate about how the results would

be different when analyzing industrial systems. Replications of the study in the

context of industrial systems may be worthwhile in order to corroborate our find-

ings.

4.5 Conclusion

This chapter reported a large study, conducted on 395 releases of 30 Java open

source projects, aimed at understanding the relevance of the code smells in Java

open source projects—in terms of smell diffuseness—and the relation between

code smells and source code change- and fault-proneness. The study considered

17,350 instances of 13 different types of code smells, firstly detected using a metric-

based approach and then manually validated.

The study results, summarized in Table 4.10, highlighted that:

• Diffuseness of smells. The most diffused smells are the one related to size

and complexity such as Long Method, Spaghetti Code, and to some extent Com-

plex Class or God Class. This seems to suggests that a simple metric-based
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Table 4.10: Summary of the Achieved Results

Code Smell Diffuseness Removal Effect Removal Effect

on Change-Proneness on Fault-Proneness

CDSBP High Limited Limited

Complex Class Medium High Limited

Feature Envy Low Limited Medium

God Class Medium High Limited

Inappropriate Intimacy High High Medium

Lazy Class Low Limited Limited

Long Method High High Limited

LPL Medium Limited Limited

Message Chain Low Medium Limited

Middle Man Low Limited Limited

Refused Bequest Medium High Limited

Spaghetti Code High High Limited

Speculative Generality High High Limited

monitoring of code quality could already give enough indications about the

presence of poor design decisions or in general of poor code quality. Smells

not related to size like Message Chains and Lazy Class are less diffused, al-

though there are also cases of such smells with high diffuseness, see for ex-

ample Class Data Should Be Private and Speculative Generality.

• Relation with change- and fault-proneness. Generally speaking, our results

confirm the results of the previous study by Khomh et al. [17], i.e., that classes

affected by code smells tend to be more change- and fault-prone than oth-

ers, and that this is even more evident when classes are affected by multiple

smells. At the same time, if we analyze the fault-proneness results for specific

kinds of smells, we can also notice that high fault-proneness is particularly

evident for smells such as Message Chain that are not highly diffused.

• Effect of smell removal on change- and fault-proneness. Removing code

smells is beneficial most of the times for the code change-proneness. On the

other side, we found no substantial differences between the fault-proneness

of classes in the periods when they were affected by smells and when they
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were not (e.g., before the smell introduction, or after the smell removal). This

partially contrast the results of the previous studies [17] and seems to in-

dicate that the smell is not the direct cause of fault-proneness but rather a

co-occurring phenomenon in some parts of the system that are intrinsically

fault-prone for various reasons. This also confirms the principle that a class

exhibiting faults in the past is still likely to exhibit faults in the future [161].

Results of our study stress the importance of dealing with code smells and re-

move them from the system whenever possible. Otherwise, maintainability of the

code (at least for what concerns code change- and fault-proneness) could be neg-

atively affected. This clearly implies the availability of accurate smell detection

tools and their integration in a development process, e.g., in a continuous integra-

tion pipeline.

As for our future research agenda, we will focus on the definition of recom-

menders able to alert developers about the presence of potential problematic classes

based on their (evolution of) change- and fault-proneness and suggest them ap-

propriate refactoring actions. Moreover, we plan to further analyze the factors

influencing the change- and fault-proneness of classes.
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Chapter 5

Do They Really Smell Bad? A Study

on Developers’ Perception of Bad

Code Smells

5.1 Introduction

Bad code smells represent symptoms of poor design and implementation choices

[8]. Bad smells are usually introduced in software systems because developers

poorly conceived the design of the code component or because they did not care

about properly designing the solution due to strict deadlines. Complex Class, i.e.,

a class that contain complex methods and it is very large in terms of LOC; or God

Class, i.e., a class that does too much/knows too much about other classes, are

only some examples of a plethora of bad smells identified and characterized in

well-known catalogues [8, 61].

Recent empirical studies showed that code smells hinder comprehensibility

[18], and possibly increase change- and fault-proneness [16, 17]. Also, the interac-

tion between different, co-existing code smells can negatively affect maintainabil-

ity [9]. Hence, there is empirical evidence that code smells have a negative effect

on software evolution, and therefore should be carefully monitored and possibly

removed through refactoring operations. Thus, a lot of effort has been devoted for
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Table 5.1: Bad smells analyzed in our study [8] [61].

Name Description

Class Data Should Be Private (CDSBP) A class exposing its attributes

Complex Class (CC) Classes having high complexity

Feature Envy (FE) A method making too many calls to methods of another class to obtain data and/or functionality

God Class (GC) A class having huge dimension and implementing different responsibilities

Inappropriate Intimacy (II) Two classes exhibiting high coupling between them

Lazy Class (LC) A very small class that does not do too much in the system

Long Method (LM) A method having huge size

Long Parameter List (LPL) A method having a long list of parameters

Middle Man (MM) A class delegating all its work to other classes

Refused Bequest (RB) A class inheriting functionalities that it never uses

Spaghetti Code (SC) A class without structure that declare long methods without parameters

Speculative Generality (SG) An abstract class that is not actually needed, as it is not specialized by any other class

the definition of approaches aiming at detecting and removing bad code smells

[25, 20, 21, 163, 52, 53].

Despite the existing evidence about the negative effects of code smells [18, 17, 9]

and the effort devoted to the definition of approaches for detecting and removing

them, it is still unclear whether developers would actually consider all bad smells

as actual symptoms of wrong design/implementation choices, or whether some

of them are simply a manifestation of the intrinsic complexity of the designed so-

lution. In other words, there seem to be a gap between the theory and the practice.

For example, a recent study found that some source code files of the Linux Kernel

intrinsically have high cyclomatic complexity. However, this is not considered a

design or implementation problem by developers [164]. Also, empirical studies

indicated that (i) God Classes sporadically changing are not felt as a problem by

developers [12]; and (ii) some developers, in particular junior programmers, work

better on a version of a system having some classes that centralized the control, i.e.,

God classes [43]. These results suggest that the presence of bad smells in source

code is sometimes tolerable, and part of developers’ design choices.

Recently, Yamashita and Moonen [134] performed an exploratory survey aimed

at investigating developers knowledge about code smells, by asking questions like

“How familiar are you with bad code smells?”. Results showed that a large pro-

portion of respondents did not know about bad code smells. While the study

of Yamashita and Moonen aimed at investigating to what extent developers had
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a theoretical knowledge of code smells (i.e., knowing them from their name and

definition), no study so far investigated whether, given a problem instance—that

can be brought back to the presence of a bad smell in the code—developers actu-

ally perceive the problem as such and whether they associate the problem to the

same symptoms explained in the smell definition.

To bridge this gap, we conducted a study aimed at investigating the devel-

opers’ perception of code smells. First, we identified and manually validated in-

stances of 12 different bad smells in three open source projects.

Then, we provided a questionnaire to the participants where we showed code

snippets affected and not affected by bad smells, and asked whether, in the respon-

dents’ opinion, the code component has any problem. In case of a positive answer,

we asked them to explain what kind of problem they perceived and how severe

they judged it. We asked different categories of subjects to participate in the study,

namely (i) Master’s students, representing a population of subjects pretty knowl-

edgeable about the theoretical concepts of code smells, (ii) industrial developers,

i.e., people with experience on real development projects, but not knowing the

code being shown; and (iii) developers from the open-source projects in which the

bad smells have been collected. In total, we received responses from 34 subjects,

and specifically 15 Master’s students, 9 industrial developers, and 10 original de-

velopers of the studied projects. The data used in our study are publicly available

as replication package1.

5.2 Design of the Empirical Study

The goal of the study is to investigate to what extent bad smells reflect develop-

ers’ perception of poor design and implementation choices and, in this case, what

is their perceived severity of the problem. The quality focus is source code com-

prehensibility and maintainability that can be hindered by the presence of bad

smells. The context of the study consists of: (i) objects, i.e., bad smells identified in

three software projects; and (ii) subjects (hereby referred to as “participants”), i.e.,
1http://tinyurl.com/o6lk584
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Master’s students and professional developers providing their opinions about bad

smells.

5.2.1 Research Questions

Our study aims at addressing the following two research questions:

• RQ1: To what extent do bad smells reflect developers’ perception of design problems?

• RQ2: What are the bad smells that developers feel as the most harmful?

In the context of our study, we considered the twelve code smells briefly de-

scribed in Table 5.1. Our choice of these smells is not random, but guided by

the will of considering a mix of bad smells related to complex/large code compo-

nents (e.g., Complex Class, God Class) as well as smells related to the non-adoption

of good Object-Oriented coding practices (e.g., Inappropriate Intimacy, Refused Be-

quest). However, we did not consider smells such as Divergent Change or Paral-

lel Inheritance, because their full understanding would require a deep knowledge

and/or exploration of the system history.

Table 5.2: Characteristics of the object systems.

Project KLOC #Classes #Methods

ArgoUML 0.34 280 1,889 10,450

Eclipse 3.6.1 440 2,181 18,234

jEdit 4.5.1 165 520 5411

5.2.2 Context Selection

The objects considered in the study are bad smells identified in three open-source

projects, namely ArgoUML, Eclipse, and JEdit. ArgoUML is an open-source

UML modeling tool while Eclipse is a popular Integrated Development Envi-

ronment supporting different programming languages. Finally, JEdit is a text ed-
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itor for programmers. Table 5.2 reports the characteristics of the analyzed projects,

namely the size in terms of KLOC, number (#) of classes and number of methods.

Table 5.3: Bad Smells Instances Identified in Each System.

Project CDSBP CC FE GC II LC LM LPL MM RB SC SG

ArgoUML 5 4 1 3 4 0 28 0 2 4 15 28

Eclipse 32 35 6 15 7 15 180 0 2 31 24 12

jEdit 7 21 0 6 4 0 33 9 0 3 18 14

To answer our research questions we needed to identify instances of the twelve

considered bad smells in the object systems. Unfortunately, since there are no an-

notated sets of such smells available in literature, we had to manually identify

them. A Master’s student from the University of Salerno manually identified in-

stances of the considered bad smells in each of the object systems by relying on the

definition of the smells reported in the literature. In such a process, the student

also relied on metric extractors and on metric-based definitions of code smells,

such as the one of DECOR [20]. For example, God Classes were identified as large

classes implementing several responsibilities and controlling many other objects

in the system, while Long Methods were simply identified by analyzing the lines

of code composing them. The resulting set of smells has been then validated by a

second Master’s student to verify that all affected code components identified by

the first student were correct. Note that, while this does not ensure completeness

in the identification of smells, having multiple manual evaluations ensure enough

confidence about the absence of false positives, that could instead occur if relying

on automatic detection tools. Also, such a multiple evaluation limited the bias in

our dataset. For the aim of our study this was exactly what we needed: a set of reli-

able bad code smells on the object systems. Note that, we did not find instances of

all considered smells in each object system. Table 5.3 reports, for each code smell,

the number of its instances identified in the object systems.

As summarized in Table 5.4, participants involved in the study belong to the

following three categories:
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Table 5.4: Study participants: invited and actual respondents.

Category Invited Answered Return rate (%)

Original Developers 45 10 22%

Industrial Developers 28 9 32%

Master’s students 15 15 100%

Overall 88 34 39%

1. Developers working on the three open-source systems. We sent invitations to ac-

tive developers of the three object systems, identified by analyzing the sys-

tems’ commit history2. In total, we invited 19 developers from ArgoUML,

11 from Eclipse, and 15 from jEdit. We received responses from 4, 3, and 3

developers, respectively. In the following, we will refer to them as original

developers. Note that each of the original developers was asked to work on

tasks related to the code belonging to the system she had worked on only.

2. Industrial developers. We invited 28 industrial developers from different ap-

plication domains having a programming experience ranging between 2 and

15 years and that generally work on Java development. We obtained an an-

swer from 9 of them; each one performed tasks related to all three systems.

3. Master’s students. We recruited 15 Master’s students attending the Advanced

Software Engineering course at the University of Salerno (Italy). Students

had good knowledge of Object Oriented programming and they attended

a seminar of three hours about bad code smells and design problems. All

students performed tasks related to all three systems.

The reason for having these different categories of participants is to get the

opinion of developers who know the code very well, as well as of outsiders (in-

dustrial developers and Master’s students) that, while being less knowledgeable

about the code, might provide a less biased indication.

2We considered developers that performed at least one commit in the last two years.
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5.2.3 Study Procedure

The experimental tasks consisted of questionnaires that participants had to an-

swer through a Web application tool named eSurveyPro. In these questionnaires

we showed to the participants source code snippets (that may or may not contain

code smells) and asked questions about whether the code contained possible de-

sign/implementation problems, as well as the perceived severity of the problem,

if any.

Specifically, given the object system Si, the following process was performed:

1. For each code smell cj having at least one instance in Si, we randomly se-

lected one instance or took the only one available. Note that with “instance”

we refer to the code component(s) affected by the smell. For example, it

could be a single method affected by the Long Parameter List smell as well as

a pair of classes affected by the Inappropriate Intimacy smell. Note that we did

not select code components affected by more than one bad smell, since we

want to isolate each smell involved in our study.

2. For each selected smell instance, we created a task composed of the following

questions:

• In your opinion, does this code component3 exhibit any design and/or

implementation problem?

• If YES, please explain what are, in your opinion, the problems affecting

the code component.

• If YES, please rate the severity of the design and/or implementation

problem by assigning a score on the following five-points Likert scale

[165]: 1 (very low), 2 (low), 3 (medium), 4 (high), 5 (very high).

3. For each task related to a code component affected by a bad smell, we also

instantiated a task—requiring to participants the same answers seen above—
3Depending on the code smell object of the question, a code component could be a method, a

class, or a pair of classes.
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concerning randomly selected code components not affected by any of the

code smells considered in our study. This was done to limit the bias in the

study, i.e., avoid that participants always indicated that the code contained a

problem and the problem was a serious one.

The final questionnaires included 20 tasks for ArgoUML (of which 10 related to

components affected by bad smells), 22 for Eclipse (11 affected by bad smells),

and 18 for JEdit (9 affected by bad smells). As explained before, the difference

in the number of tasks for the three systems is because as shown in Table 5.3, we

identified instances of 10 kinds of smells in ArgoUML, 11 in Eclipse and 9 in

JEdit.

All participants invited in our study received an e-mail with instructions on

how to answer the survey and a link to the website where each participant could

log in to visualize and answer the questions. Participants had up to four weeks to

complete this survey.

5.2.4 Data Analysis

To answer RQ1 we compute, for each type of code smell:

1. The percentage of cases the bad smell has been perceived by the participants.

With perceived, we mean cases where participants answered yes to the ques-

tion: “In your opinion, does this code component exhibit any design and/or

implementation problem?”

2. The percentage of times the bad smell has been identified by the participants.

With identified, we mean cases where besides perceiving the smell, partici-

pants were also able to identify the exact smell affecting the analyzed code

components, by describing it when answering to the question “If yes, please

explain what are, in your opinion, the problems affecting the code compo-

nent”. Note that we consider a bad smell as identified only if the design prob-

lems described by the participant are clearly traceable onto the definition of

the bad smell affecting the code component. For example, given the follow-
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ing bad smell description for the Feature Envy bad smell: “a method making too

many calls to methods of another class to obtain data and/or functionality”, exam-

ples of “correct” descriptions of the problem are “the method is too coupled with

the Ci class”, or “the method invokes too many methods of the Ci class” where, Ci is

the class envied by the method. On the other side, an answer like “the method

performs too many calls” is not considered enough to mark the bad smell as

identified.

Performing this analysis for each bad code smell and for each category of

participants in our study we should be able to verify (i) what are the most per-

ceived and identified code smells, and (ii) if the participants’ experience and sys-

tem knowledge play a role in the ability of perceiving and identifying code smells.

As for RQ2, we exploited the answers to the question “please rate the sever-

ity of the coding problem” provided by participants. Answers have been mainly

analyzed through descriptive statistics.

5.3 Analysis of the Results
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Figure 5.1: Percentage of (M)aster’s students, (I)ndustrial developers, and

(O)riginal developers that perceived and identified the bad smell examples in Ar-

goUML.
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JEdit.
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Before answering the two research questions formulated in Section 5.2.1, we

analyze to what extent participants perceived a design problem in classes not con-

taining any of the bad smells considered in our study. As previously explained,

this is a sanity check aimed at verifying whether respondents were negatively bi-

ased. In total, we showed to participants 30 code components containing no smell

(i.e., 10 on ArgoUML, 11 on Eclipse, and 9 on JEdit). Master’s students, indus-

trial developers, and original developers marked as affected by design problems

10%, 5%, and 1%, respectively, of these code components. The low percentage

indicates the absence of a negative bias in the respondents, and that this is particu-

larly true for those with more experience (industrial developers) and with a better

knowledge of the code (original developers). Moreover, when manually analyzing

these cases of false positives, we found that most of the design problems observed

by participants in classes not affected by any smell were related to problems in

comments (e.g., comments are missing) or method/class naming (e.g., class name does

not reflect the class purpose). In other words, in some sense the respondents cor-

rectly identified some kinds of problems, although these are not really structural

code smells, but more similar to lexical smells [166], out of scope for this study.

Table 5.5: Median of the severity assigned by participants to the identified design

problems.

System Participants CDSBP CC FE GC II LC LM LPL MM RB SC SG

Master’s students - 4 - 3 2 - 3 - - - 2 3

ArgoUML Industrial 2 5 4 5 3 - 4 - - - 5 3

Original 1 5 4 5 3 - 4 - - - 3 -

Master’s students - 4 4 5 4 1 4 - - 4 3 3

Eclipse Industrial 3 4 5 5 4 - 5 - - - 5 3

Original 3 5 5 5 - - 5 - - 4 5 -

Master’s students - 4 - 3 - - 3 3 - 4 3 3

JEdit Industrial 2 5 4 5 3 - 4 3 - - 5 3

Original 2 5 - 5 - - 5 - - - 4 -

Turning to the core of our study, Figures 5.1, 5.2, and 5.3, report the percent-

age of participants (of the different categories) that (i) perceived a problem in the

analyzed code, and (ii) correctly identified the bad smell present in the code com-
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ponent. Note that a code component that is correctly identified is also perceived

(the opposite is not true). Columns labeled with “M”, “I”, and “O” report results

for Master’s students, industrial developers, and original developers, respectively.

Also, Table 5.5 reports the median severity assigned by developers to the identified

design/implementation problems4.

5.3.1 Smells Generally not Perceived as Design or Implementa-

tion Problems

When looking at Figures 5.1, 5.2, and 5.3, one can immediately realize that some

smells are, generally, not perceived as actual problems. This is particularly true

for Class Data Should Be Private, Middle Man, Long Parameter List, Lazy Class, and

Inappropriate Intimacy. In the following, we provide a qualitative analysis for them,

based on the collected feedbacks and on the analysis of the code itself.

Class Data Should Be Private (CDSBP). This smell arises when a class exposes

its attributes [8]. Respondents did not perceive this as an issue for the analyzed

code components. Only a small percentage of Master’s students perceived a prob-

lem in such components; however, they were never able to associate the problem

to the characteristics of the CDSBP smell, mainly claiming issues related to poor

commenting and methods complexity. Few (18% on average on the three systems)

industrial developers recognized CDSBP as an issue, while one original developer

for each system recognized the problem in the code. However, by looking at the

severity values (Table 5.5), it emerges that respondents did not feel CDSBP as a

real problem in the code. For instance, the severity assigned by original develop-

ers is very low (1) on ArgoUML, medium (3) on Eclipse, and low (2) on JEdit. It is

interesting to report an observation made by the ArgoUML developer who recog-

nized the CDSBP instance, while assigning it a very low severity: “this class exposes

all its fields, and this could look like bad coding. However, at the end of the day this is an

4Complete data about the answers provided by participants are available in our replication

package.
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utility class with public static fields5 that can be used from everywhere in the system”.

Middle Man (MM). Middle Man instances arise when a class is delegating all its

work to other classes [8]. Classes affected by this smell were perceived by de-

velopers as classes without any design problem. The only exceptions are 13%

and 6% of Master’s students perceiving (but not identifying) a design problem on

ArgoUML and Eclipse, respectively (note that this bad smell is not present in

JEdit). Thus, high levels of delegation between classes do not seem to bother

developers. In our understanding, developers could better perceive such a smell

when doing performance analysis—e.g., because the Middle Man could introduce

overhead.

Long Parameter List (LPL). We found this smell in JEdit only (see Figure 5.3),

where the adjustDockingAreasToFit method takes 11 parameters as input.

While 53% of Master’s students perceived a problem in the method, just 20% of

them indicated the number of parameters as the issue. In most of the other cases,

the problem felt by Master’s students was the method complexity, the same per-

ceived by the only original developer reporting a problem in the method. Finally,

among the industrial developers, only one of them (11%) identified the problem

in the method, however assigning it a severity of 3 (medium). The explanation pro-

vided justifies the low severity score: “the method has several parameters; however,

the feature implemented in it requires all of them”. For this bad smell, the differences

observed between the perception of students and professional developers can be

explained as follows. Students are not used to large and complex projects. Con-

sequently, they are more concerned by a method with several parameters as com-

pared to more experienced developers. Also, original developers are aware of the

reasons why such methods have a high number of parameters and are therefore

not particularly concerned.

Lazy Class (LC). This smell represents a very small class that does little in the

system. It is considered a bad smell since “each class costs money to maintain and

understand” [8]. This smell affects only one of the investigated projects (Eclipse)

5Note that the fields were not final.
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and it has been identified by only one Master’s student (6%), that however ranked

the problem as a very low severity one. In summary, the class of the Eclipse

system named SelectionOnNameOfMemberValuePair was not considered as

harmful by developers, since it just contains two methods, one of which is a sim-

ple print method. On the one hand, it is not surprising to see a lower severity

perception here. On the other hand, in order to recognize a Lazy Class as possi-

ble problem, one should have clearly in mind whether having such an additional

class could, in perspective, have benefits (e.g., because the class itself is likely to

evolve or to be extended by others), or negative effects (because it means scatter-

ing maintenance activities). Unfortunately, in this case we did not get opinions

from original developers, the only ones that could have expressed an informed

opinion.

Inappropriate Intimacy (II). This smell describes high levels of coupling between

two classes [8]. Our results show that respondents did not consider high cou-

pling as a problem. Master’s students perceived a problem in the relationship

between the two highly coupled classes in 48% of the cases, although they only

identified the problem in 11% of the cases. Industrial developers were able to

identify the problem in 18% of the cases while, among the original developers,

only one of them recognized the existence of a coupling issue in ArgoUML, by as-

signing it a medium (3) severity. The two involved classes (i.e., ShortcutMgr and

ActionWrapper) have 27 dependencies among them. Despite that, the ArgoUML

developer explained why this is not a big issue: “ActionWrapper represents an

action in the system that can be associated to a specific keyboard shortcut, while the class

ShortcutMgr is in charge of managing all ArgoUML’s shortcuts. Thus high coupling

between these two classes is justified from my point of view”.

Summarizing, the bad smells described above are not perceived as problems by

respondents that, consequently, are not able to identify them in source code. This

is true for all the three categories of developers involved in our study, highlighting

how developer’s experience and system’s knowledge do not play any important

role in these cases. Also, it is interesting to observe that all these five smells (i.e.,

137



5.3. Analysis of the Results

CDSBP, MM, LPL, LC, and II) are related to the lack of applying good Object-

Oriented (OO) design practices, rather than to something one can easily perceive

by looking at the code, (i.e., as it would be for God Class). Indeed, by carefully look-

ing at the definition of such smells, we notice that: CDSBP violates the information

hiding principle; MM is a symptom of something wrong in the distribution of re-

sponsibilities between classes; LPL should be avoided in OO programming, since

a method can ask other objects for the information it needs without the necessity

of receiving all of them through parameters; LC often represents a class without a

precise responsibility; and II identifies high-levels of coupling between classes.

5.3.2 Smells Generally Perceived and Identified by Respondents

There are some categories of smells that: (i) are highly perceived and identified by

developers, (ii) create more concerns for developers having more experience and

system knowledge, and (iii) are rated with high severity values. These smells are

Complex Class, God Class, Long Method, and Spaghetti Code. As one can immediately

notice, differently from the previous group, such smells are the ones for which the

problem can be immediately perceived by looking at the code (which may be long

and/or complex). In the following, we provide a detailed discussion for each of

them.

Complex Class (CC). Original developers always identify this bad smell in the af-

fected code components, assigning to it the maximum severity (i.e., 5, very high).

The provided explanations highlight the problems derived by classes having a

high code complexity: “the class is too complex, intricate, and very difficult to compre-

hend”, “several methods in this class are very complex, negatively affecting its maintain-

ability”. Also, industrial developers generally identify the problem (92% of cases,

on average) while the less experienced participants (i.e., Master’s students) were

able to describe the problem in 57% of cases, on average. Thus, higher experience

seem to alert developers about problems caused by working on complex code.

Note that the median of severity assigned by all participants to CC is high or very

high (see Table 5.5).
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God Class (GC). GC is the smell for which the respondents assigned the high-

est severity. Specifically, industrial and original developers always identified the

problem in the analyzed code components, explaining how classes affected by GC

are “too large”, “a mixture of different responsibilities”, resulting in “difficulties in creat-

ing a mental model of how the class works”. Industrial and original developers ranked

GC with a median severity of 5 (very high). An example of GC instance evaluated

in this study is the GeneratorJava class of ArgoUML composed by 66 methods

and explicitly defined by one of the original developers as a “big class in need of

refactoring”. Master’s students were able to identify the design problem in 84% of

cases, on average, by however assigning lower severity values than industrial and

original developers (see Table 5.5). Thus, also on this bad smell higher developers

experience seems to increase the threats perceived by GC instances.

Long Method (LM). Also this smell has been always identified by the original de-

velopers. The assigned median severity was 5 (very high) on Eclipse and JEdit,

and 4 high on ArgoUML. An interesting comment made by one of the ArgoUML

developers was “this method is way too long, it could be split into three different meth-

ods”. This comment confirms the Long Method bad smells as indicator of Extract

Method refactoring [8] opportunities. Industrial developers identified the LM in-

stances in 85% of cases, on average, assigning them a median severity of 4 (high)

on ArgoUML and JEdit, and of 5 (very high) on Eclipse. On average, Master’s

students perceived the problem in 67% of the cases, correctly identifying it in 55%

of the cases. Also in this case, the proportion of respondents with more experience

that identified the problem is greater than the proportion of students.

Spaghetti Code (SC). On average, original developers identified SC instances in

77% of cases, followed by industrial developers (70%), and Master’s students

(61%). It is interesting to report the comment left by an ArgoUML developer: “this

class looks like procedural programming”. This is exactly what the SC smell is: the

abuse of procedural programming in OO code. The severity assigned by original

and industrial developers is generally high or very high, compared to that perceived

by students bounded between low and medium.
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5.3.3 Smells whose Perception may Vary

Finally, there is a group of smells for which the perception varies case by case.

Such smells are Feature Envy, Refused Bequest, and Speculative Generality.

Feature Envy (FE). This smell arises when a method is more interested in a class

other than the one it is implemented in [8]. We found instances of FE in ArgoUML

and Eclipse. Master’s students almost always perceived some problems in meth-

ods affected by FE (100% in ArgoUML and 87% in Eclipse), however they always

failed in correctly identifying the FE symptom in ArgoUML, and they only iden-

tify it in 27% of the cases in Eclipse. Instead, industrial developers were able to

identify theFE instances in 50% of the cases, while for original developers this per-

centage goes up to 70%. One of the industrial developers explained that “method

parseMessage is placed in the wrong class. It should be moved to MyTokenizer

since it is likely to change with that class”. When identifying the FE smell, develop-

ers assigned to it high levels of severity, ranging from a median value of 4 (high)

assigned by Master’s students and industrial developers, to a median value of 5

(very high) assigned by original developers. As for other smells, it can be noticed

that highly experienced developers are the ones that perceive this bad smell the

most. We conjecture that FE smells are perceived mainly by original developers,

because the “interest” of the FE method to other classes often grows over time

and/or can be identified by the need for co-changing such a method together with

other classes. Indeed, FE can be effectively identified by using historical data [52]

(as explained later in Chapter 7).

Refused Bequest (RB). This smell arises between two classes when one inherits

pieces of functionality from the other and never uses them. This is the only smell

for which we have strong contradicting results across the three object systems. In

particular, on ArgoUML (see Figure 5.1) and JEdit (see Figure 5.3) all respondents

almost never perceived classes affected by RB as problematic ones. The situation

is quite different on Eclipse, where 40% of Master’s students, 44% of industrial

developers, and 66% of original developers identified instances of RB in the ana-

lyzed pair of classes. We analyzed the instances of RB evaluated by participants
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on the three object systems. What we found was that:

• in ArgoUML, the RB arises due to classes TabSpawnable and TablePanel.

The latter overrides four out of the five methods inherited by TabSpawnable.

• in JEdit, the RB is between the class CompletitionPopup and the class

CompleteWord. The latter overrides five out of the eight methods inherited

by CompletitionPopup.

• in Eclipse, the RB is quite more extreme. In particular, the smelly class

named DefaultBindingResolver inherits 53 methods from the parent

class, which is BindingResolver, overriding 52 of them.

Note that in none of the three above cases the overriding methods invoke the

super method of the superclass. The RB instance present in Eclipse was quite

more visible than those present in ArgoUML and JEdit, concerning developers

about its presence. The median severity assigned to this issue by original devel-

opers was high (4)–see Table 5.5.

Speculative Generality (SG). This smell represents the only one that was mainly

perceived and identified by developers with low experience than by experienced

ones. Master’s students identified this smell in 53% of cases, on average, followed

by industrial developers (33%), and original developers, never perceiving any de-

sign problem in classes affected by this smell. By looking back at the definition

of SG, instances of this smell arise when a class is declared abstract but it is

not specialized by any other class in the system. From the perspective of a Mas-

ter’s student, that mainly learned OO in courses and textbooks, this looks like

a wrong usage of the OO paradigm. The median severity assigned by them is

3 (medium). The industrial developers identifying the problem (33% on average)

also provided a medium severity to the SG instances, and one of them left a com-

ment likely explaining the reason why those classes do not represent a problem

for original developers: “this class is abstract but not inherited by any class of the

system. However, it could be that it is a partial implementation of something that will
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be integrated in the system in future system releases”. In other words, without hav-

ing a deep knowledge of the system, of the rationale behind the implementation

choices, and of the project schedule, it could be difficult in some cases to assess de-

sign and/or implementation problems. Results obtained for this smell also warns

against the abuse of too aggressive bad smell detectors that, in cases like this one,

would report potential problems based on symptoms like the ones describing the

SG. Only by observing the class evolution—i.e., an abstract class would never

be inherited during a long period of observation—one can say this is, indeed, a

problem. Again, this reinforces the conjecture that historical data are extremely

useful when identifying bad code smells [52].

5.4 Threats To Validity

Threats to construct validity are mainly related to how the sample of smells used

in the study was identified, and to how we measured the developers’ perception

of code smells. Concerning the identification of the smell sample, a big threat can

be due to the fact that, despite the presence of multiple evaluators minimized the

possible effect of false positives, the identified smell instances may depend on the

perception of who inspected the code to identify such smells. Hence, it could be

the case that participants evaluated what the two students perceived as smells.

However, the identification of smells was performed having all the possible sup-

port available, including smell definitions [8, 61], tools to compute metrics, and the

source code change history. Certainly, in any case we had to limit to one (randomly

selected) smell of each type per system, and this could have excluded instances of

smells where the “magnitude” of the problem was more or less evident. However,

such a kind of study involving industrial and original developers had quite strict

constraints, i.e., we could not afford to involve them in long inspection tasks on a

huge number of smells.

Concerning the measure of perception (Section 5.2), we asked developers to

tell us whether they perceived a problem in the code shown to them. In addition,

we asked them to explain what kind of problem they perceived in order to un-
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derstand whether or not they were able to correctly identify the design and/or

implementation problem. Finally, for the severity we use a Likert scale [165] that

allows to compare responses of multiple respondents. We are aware that ques-

tionnaires could only reflect a subjective perception of the problem, and might not

fully capture the extent to which the bad smell could affect software development

activities. To this aim, studies such as the one done by Yamashita and Moonen [9]

are more suited.

Threats to internal validity may be related to factors that have influenced our

results. One factor is the response rate: while appearing not very high (39%), it

is higher than what it is normally expected in survey studies—i.e., below 20%

[167]—even for the part of study done with the original developers, for which we

obtained 22% return rate. Note also that we ensured a participation of at least

three original developers for each system. We have limited a possible bias effect—

i.e., , the fact that developers could have told us that they perceived the presence

of smells even in code not containing any smell—by also showing source code

elements without smells.

Threats to external validity concern the generalization of our findings. Such

threats can be related to (i) the set of chosen objects, (ii) the kinds of smells inves-

tigated in the study, and (iii) the pool of the participants of the study. Concerning

the chosen objects, we are aware that our study is based on smells detected in three

systems only, and that further studies are needed to confirm our conjecture. In this

study we had to constrain our analysis to a limited set of smell instances, because

the task to be performed by each respondent had to be reasonably small. In this

study we covered a pretty large variety of smells, i.e., the 12 described in Table

5.1. However, there are some smells we did not consider. Some of them, such

as Parallel Inheritance or Divergent Changes, are smells which analysis explicitly re-

quires a deep knowledge of the system history [52], and would therefore require a

different type of study. Finally, for what concerns the participants, they represent

different categories of developers, ranging from Master’s students, representative

of junior developers, to senior industrial programmers, and original developers of

the investigated systems, having a deep knowledge of the code used in the study.
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5.5 Conclusion

This chapter reported an empirical study aimed at analyzing to what extent bad

code smells are perceived by developers as actual design and/or implementa-

tion problems. The study concerned examples of 12 kinds of smells detected in

three Java open source projects—ArgoUML, Eclipse, and JEdit—and involved

10 original developers from the three projects and 24 outsiders, of which 9 are in-

dustrial developers and 15 are Master’s students. The study results allowed us to

distill the following lessons learned:

Lesson I. There are some smells that are generally not perceived by developers as design

problems. Those smells are Class Data Should Be Private, Middle Man, Long Param-

eter List, Lazy Class, and Inappropriate Intimacy. As explained, these smells are all

related to object-oriented (OO) good programming practice more than to com-

plex/long code. Some of the explanations provided by developers highlighted

as apparent violations of OO design principles, such as high levels of coupling

or the absence of information hiding, do not necessarily reflect problematic situ-

ations. Sometimes they are simply the result of conscious choices made by de-

velopers. This underlines how approaches to (semi)automatically improve source

code quality (e.g., refactoring recommendation systems) cannot simply be evalu-

ated through quality metrics, but should always be assessed with developers, in

order to verify if the refactoring recommendations really reflect design problems

from a developer’s point-of-view.

Lesson II. Instances of a bad smell may or may not represent a problem based on the

“intensity” of the problem. This, for example, happens for Refused Bequest, for which

only the instance detected in Eclipse was recognized as a serious problem. This is

pretty much consistent with results of the previous study made by Ratiu et al. for

God classes [12]. This result highlights the usefulness of smell detectors providing

a measure of severity [23].

Lesson III. Smells related to complex/long source code are generally perceived as an im-

portant threat by developers. This happens for Complex Class, God Class, Long Method,
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and Spaghetti Code. Not only these smells were consistently identified by a very

high proportion of respondents, but also they were rated with the highest level

of severity. Intuitively, it could simply be the case that such smells are the easiest

to be identified by developers, but it can also be that these are the problems for

which developers require the most effective solutions, i.e., precise recommenders

that identify the smells and propose working solutions aimed at factoring them

out.

Lesson IV. Developer’s experience and system’s knowledge play an important role in the

identification of some smells. This is particularly true not only for the smells related

to complex/long code, but also for smells related to possible mis-uses of OO prin-

ciples, e.g., the Feature Envy. This confirms that code quality assessment is a crucial

task and team managers should allocate senior developers on them rather than ju-

nior programmers; despite a good academic background, the latter might not be

able to properly identify and judge the problems in the code. In addition to that,

as discussed above, an appropriate judgement of the severity of smells often re-

quire a good knowledge of the overall system design, of the rationale of decisions

taken in the past, and of possible evolution trajectories the system would have in

the future. Only experienced developers would know all these details.

As it always happens for empirical studies, the only way to corroborate our

findings is to extend the study using a larger set of smells, other software, and

different participants. Such replications are part of the agenda of our future work.
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Chapter 6

An Experimental Investigation on the

Innate Relationship between Quality

and Refactoring

6.1 Introduction

Refactoring has been defined by Fowler as “the process of changing a software system

in such a way that it does not alter the external behavior of the code yet improves its in-

ternal structure” [8]. This definition entails a strong relationship between refactor-

ing and internal software quality, i.e., refactoring improves software quality (im-

proves the software internal structure). This has motivated research on bad smell

and antipattern detection and on the identification of refactoring opportunities

[25, 20, 52, 66, 27, 30, 34, 32].

However, whether refactoring is actually guided by poor design has not been

empirically evaluated enough. Thus, this assumption still remains, for some as-

pects, a common wisdom that has generated controversial positions [121]. Specif-

ically, there are no studies that quantitatively analyze which are the quality char-

acteristics of the source code increasing their likelihood of being subject of refac-

toring operations. To the best of our knowledge, the available empirical evidence

is based on two surveys performed with developers trying to understand the rea-
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sons why developers perform refactoring operations [121, 120].

In addition, concerning the improvement of the internal quality of software,

empirical studies have only shown that generally refactoring operations improve

the values of quality metrics [168, 169, 170, 171], while the effectiveness of refac-

toring in removing design flaws (such as code smells) is still unknown.

In order to fill this gap, we use an existing tool, namely REF-FINDER [172], to

automatically detect refactoring operations of 52 different types on 63 releases of

three Java software systems, namely Apache Ant1, ArgoUML2, and Xerces-J3.

Since REF-FINDER can identify some false positives, we manually analyzed the

15,008 refactoring operations detected by the tool. Among them, 2,086 were clas-

sified as false positives. Thus, in the context of our study we analyzed 12,922

refactoring operations.

Having identified the refactoring operations, for each class in the analyzed sys-

tems’ releases we (i) measured a set of eleven quality metrics, and (ii) detected if

it is affected by any instance of eleven code smells. Using these data we verify

whether refactoring operations occur on code components for which the factors

above (i.e., quality metrics, presence of code smells) suggest there might be need

for refactoring operations. In addition, we also measure the effectiveness of refac-

toring operations in terms of their ability to remove code smells.

The results achieved can be summarized as follows:

1. More often than not, quality metrics do not show a clear relationship with

refactoring. In other words quality metrics might suggest classes as good

candidates to be refactored that are generally not involved in developers’

refactoring operations.

2. Among the 12,922 refactoring operations analyzed, 5,425 are performed by

developers on code smells (42%). However, of these 5,425 only 933 actually

remove the code smell from the affected class (7% of total operations) and

895 are attributable to only four code smells (i.e., Blob, Long Method, Spaghetti
1http://ant.apache.org/
2http://argouml.tigris.org/
3http://xerces.apache.org/xerces-j/
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Table 6.1: Characteristics of the analyzed projects

Project Period Analyzed #Releases Classes KLOC

Apache Ant Jan 2000-Dec 2010 1.2-1.8.2 17 87-1,191 8-255

ArgoUML Oct 2002-Dec 2011 0.12-0.34 13 777-1,519 362-918

Xerces-J Nov 1999-Nov 2010 1.0.4-2.9.1 33 181-776 56-179

Overall - - 63 - -

Code, and Feature Envy). Thus, not all code smells are likely to trigger refac-

toring activities.

In summary, such results suggest that (i) more often than not refactoring ac-

tions are not a direct consequence of worrisome metric profiles or of the pres-

ence of code smells, but rather driven by a general need for improving maintain-

ability, and (ii) refactorings are mainly attributable to a subset of known smells.

For all these reasons, the refactoring recommendation tools should not only base

their suggestions on code characteristics, but they should consider the developer’s

point-of-view in order to propose meaningful suggestions of classes to be refac-

tored.

6.2 Empirical Study Design

The goal of the study is to analyze refactoring operations occurring over the history

of a software project, with the purpose of understanding (i) if quality metrics and

code smells presence provide indications on which code components are more/-

less likely of being refactored; and (ii) as a consequence, to what extent are refac-

toring operations effective in removing code smells from source code. The object

systems, the tools, and the raw data are available for replication in our online ap-

pendix.4

6.2.1 Context and Research Questions

The study aims at addressing the following research questions:
4http://dx.doi.org/10.6084/m9.figshare.1207916
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• RQ1: Are refactoring operations performed on classes having a low-level of main-

tainability as indicated by quality metrics?

• RQ2: To what extent are refactoring operations (i) executed on classes exhibiting

code smells and (ii) able to remove code smells?

The context of the study consists of 63 releases of three Java open source projects,

namely Apache Ant, ArgoUML, and Xerces-J. Apache Ant is a build tool and

library specifically conceived for Java applications (though it can be used for other

purposes). ArgoUML is an open source UML modeler, while Xerces-J is a XML

parser for Java. Although this looks a relatively small context (three projects only),

such a choice has been necessary to allow us manually validating the detected

refactoring and code smells, as detailed below. Table 6.1 reports characteristics

of the analyzed systems, namely analyzed releases, number of analyzed releases,

and size range (in terms of KLOC and # of classes).

6.2.2 Study Variables and Data Extraction

The dependent variables considered in our study, for all the research questions,

are the refactoring operations (of different types) being observed across releases of

different programs. The independent variables are the factors we relate to such

observed refactoring and namely:

1. For RQ1, a series of quality metrics (described below).

2. For RQ2, the presence of code smells (of different types) in software releases.

To answer our research questions, we first need to detect refactorings over the

evolution history of the studied systems. To this aim we use an existing tool,

REF-FINDER [172], to detect refactoring operations performed between each sub-

sequent couples of releases of each system. REF-FINDER has been implemented as

an Eclipse plug-in and it is able to detect 63 different kinds of refactoring opera-

tions. In a case study conducted on three open source systems, REF-FINDER was

able to detect refactoring operations with an average recall of 95% and an average

149



6.2. Empirical Study Design

Table 6.2: Refactoring operations analyzed

Project #Refactorings Distinct types of refactorings

Apache Ant 1,469 31

ArgoUML 3,532 43

Xerces-J 7,921 43

Overall 12,922 52

precision of 79% [172]. Even if the accuracy of such a tool is quite high, we tried

to (at least) mitigate problems related to false positives (precision) through man-

ual validation of the refactoring operations identified by REF-FINDER. Specifically,

each refactoring operation identified by the tool was manually analyzed through

source code inspection by two Master’s students from the University of Salerno.

The students individually validated each of the proposed refactoring operations.

Once students validated the refactoring operations, they performed an open

discussion to solve conflicts and reach a consensus on the refactoring operations

analyzed, classifying them as true positive or false positive. Of the 15,008 refactoring

operations detected by Ref-Finder, 12,922 operations have been manually classi-

fied as actual refactoring operations, producing as output a set of triples (relj , refk,

C), where relj indicates the release number, refk the kind of refactoring occurred,

and C is the set of refactored classes.

Table 6.2 reports the number of refactoring operations (as well as the number

of different types of refactorings) identified on the three systems after the manual

validation. While the extracted refactoring operations are needed to answer all our

research questions, in the following we detail on data collection activities made to

specifically answer each research question.

Data Extracted to Answer RQ1

To answer RQ1, we need to measure—for each class of the analyzed systems—

a set of quality metrics. Specifically, we measure for each class in the analyzed

systems’ releases a set of eleven quality metrics. Since we know in each release

which classes have been subject of which refactoring operations, we can use these

150



Chapter 6. On the Innate Relationship between Quality and Refactoring

Table 6.3: Quality metrics measured to answer RQ1

Metric Description

Lines of Code (LOC) The number of lines of code excluding white spaces and comments

Weighted Methods per Class (WMC) [64] The sum of the McCabe’s cyclomatic complexity of its methods

Depth of Inheritance Tree (DIT) [64] The depth of a class as the number of its ancestor classes

Number Of Children (NOC) [64] # of direct descendants (subclasses) of a class

Response for a Class (RFC) [64] # of distinct methods and constructors invoked by a class

Coupling Between Object (CBO) [64] # of classes to which a class is coupled

Lack of COhesion of Methods (LCOM) [64] The higher the pairs of methods sharing at least a field, the higher the cohesion of the class

# of Operations Added by a subclass (NOA) [181] # of methods added by a subclass to the methods inherited by its superclass

# of Operations Overridden by a subclass (NOO) [181] # of methods overridden by a subclass among those inherited by its superclass

Conceptual Coupling Between Classes (CCBC) [182] The higher the textual similarity between two classes, the higher their coupling

Conceptual Cohesion of Classes (C3) [70] The higher the textual similarity between methods, the higher the cohesion of the class

metrics to understand if any of them suggest that the considered classes need to

be refactored.

The employed quality metrics are reported in Table 6.3. Our choice of the met-

rics is not random. We considered LOC since it has been demonstrated to be one

of the better metrics in predicting the number of faults in a code component [173].

Thus, it is also possible that LOC also helps in identifying classes having a poor

design from the developers point of view. The Chidamber & Kemerer (CK) met-

rics [64] have been object of several empirical studies showing their ability of cap-

turing different aspects of code maintainability [64, 174, 175, 176, 177, 178, 179].

We also adopted NOA and NOO since they measure quality aspects of a class

that are not taken into account by the CK metrics (see Table 6.3). Finally, we also

considered semantic metrics since (i) they have been shown to not correlate with

structural metrics [70] and (ii) in a recent study [180] the Conceptual Coupling Be-

tween Classes (CCBC) has been shown to be the coupling metric better capturing

the developers perception of coupling between code components. To extract these

metrics, we developed a tool exploiting the Eclipse JDT API to extract all needed

information from source code.

Data Extracted to Answer RQ2

To answer RQ2, we analyze each class of the 63 considered software releases to

verify if it is affected by any code smell. In particular, we detected instances of

151



6.2. Empirical Study Design

Table 6.4: Code smells detected to answer RQ3

Name Description

Class Data Should Be Private (CDSBP) [61] A class exposing its fields, violating the principle of data hiding.

Complex Class [61] A class having at least one method having a high cyclomatic complexity.

Feature Envy [8] A method is more interested in a class other than the one it actually is in.

Blob Class (Blob) [61] A large class implementing different responsibilities and centralizing most of the system processing.

Lazy Class [8] A class having very small dimension, few methods and with low complexity.

Long Method [8] A method that is unduly long in terms of lines of code.

Long Parameter List (LPL) [8] A method having a long list of parameters, some of which avoidable.

Message Chain [8] A long chain of method invocations is performed to implement a class functionality.

Refused Bequest [8] A class redefining most of the inherited methods, thus signaling a wrong hierarchy.

Spaghetti Code [61] A class implementing complex methods interacting between them, with no parameters.

Speculative Generality [8] A class declared as abstract having very few children classes using its methods.

the eleven code smells reported in Table 6.4 defined by Fowler [8] and Brown et

al. [61]. Also in this case, the goal is to understand if the presence of specific code

smells increases/decreases the changes of the affected code components of being

the object of refactoring actions. To detect the code smells we developed a simple

tool that outputs a list of candidate classes potentially exhibiting a code smell.

Then, we manually validated the candidate code smells suggested by the tool.

The validation was performed by a Master and a Ph.D. student, who individually

analyzed and classified as true positive or false positive all candidate code smells.

Finally, the students performed an open discussion with researchers to resolve

any conflicts and reach a consensus on the detected code smells.

To ensure high recall, our tool uses very simple detection rules that overesti-

mate the presence of code smells in the code. This is done at the expense of preci-

sion. Even though this choice resulted in a longer list of candidates and thus in a

more expensive manual validation, it was necessary to study the real distribution

of code smells in the analyzed releases. Table 6.5 reports the rules applied by our

tool to detect each of the eleven analyzed code smells. Note that we choose not

to use existing detection tools [25, 20, 66] because (i) none of them has ever been

applied to detect all the studied code smells, and (ii) their detection rules are gen-

erally restrictive to ensure a good compromise between recall and precision, thus

they may miss some code smell instances. Table 6.6 reports the number of code

smells and the number of different types of smells identified on the three systems

after the manual validation.
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Table 6.5: The rules used by our tool to detect candidate code smells

Name Description

Class Data Should Be Private A class having at least one public field.

Complex Class A class having at least one method for which McCabe cyclomatic complexity is higher than 10.

Feature Envy All methods having more calls with another class than the one they are implemented.

Blob Class All classes having (i) cohesion lower than the average of the system AND (ii) LOCs > 500.

Lazy Class All classes having LOCs lower than the first quartile of the distribution of LOCs for all system’s classes.

Long Method All methods having LOCs higher than the average of the system.

Long Parameter List All methods having a number of parameters higher than the average of the system.

Message Chain All chains of methods’ calls longer than three.

Refused Bequest All classes overriding more than half of the methods inherited by a superclass.

Spaghetti Code A class implementing at least two long methods interacting between them through method calls or shared fields.

Speculative Generality A class declared as abstract having less than three children classes using its methods.

Table 6.6: Number of smells analyzed

Project #Smells Distinct types of smells

Apache Ant 1,493 10

ArgoUML 1,197 7

Xerces-J 2,788 10

Overall 5,478 10

Knowing the list of classes affected by each code smell in each software release,

we are also able to verify to what extent refactoring operations are able to remove

code smells from source code. In particular, given a refactoring operation (e.g.,

Extract Class) oi performed in a release rj on a class affected by a code smell (e.g.,

Blob class) ak, we can verify if oi was able to remove ak by checking if ak is still

present in the release rj+1 (and thus, the code smell has not be removed) or not

(the code smell has been removed).

6.2.3 Analysis Method

To address the two research questions formulated above, we build, for each object

system and for each kind of refactoring operation performed on it, logistic regres-

sion models relating a (dichotomous) dependent variable—indicating whether or

not a particular type of refactoring was performed—with independent variables

represented by the quality indicators (metrics, and presence of code smells) de-

scribed above. Logistic regression models [162] relate dichotomous dependent
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variables with one or more independent variables as follows:

⇡(X1, X2, . . . , Xn) =
eC0+C1·X1+···+Cn·Xn

1 + eC0+C1·X1+···+Cn·Xn
(6.1)

where Xi are the independent variables describing the phenomenon, and Ci the

coefficients (estimates) of the logistic regression model. We used the R statistical

software (http://www.r-project.org/) to build the logistic regression mod-

els. Specifically, we built the following two models:

1. Metrics. The first model uses the eleven measured quality metrics as inde-

pendent variables and the application of the particular type of refactoring

(e.g., Extract class) as the dependent variable. All metrics have been nor-

malized using the z-score, i.e., by subtracting the mean and dividing by the

standard deviation.

2. Smells. The second model uses the presence of the considered code smells

in a class as independent (and boolean) variables, and the application of the

particular type of refactoring (e.g., Extract class) as the dependent variable.

Note that, given a refactoring type ri and a system sj , we build the two models

presented above only if the refactoring type ri has been applied on the system sj

at least 10 times. This is done to avoid the creation of unreliable logistic regression

models.

We are aware that our models could be affected by multi-collinearity [183],

which occurs when two or more independent variables are highly correlated and

can be predicted one from the other, possibly affecting the resulting model. We

assess our models for the presence of multi-collinearity in two different ways:

1. Whenever possible, i.e., for the models based on metrics, we compute the

Spearman’s rank correlation [184] between all possible pairs of metrics, to

determine whether there are pairs of strongly correlated metrics (i.e., with a

Spearman’s ↵ > 0.8). If two independent variables are highly correlated, one

of them should be removed from the model.
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2. By using a stepwise variable removal procedure based on the Companion

Applied Regression (car) R package5, and in particular based on the vif (vari-

ance inflation factors) function [183].

Once we have avoided multi-collinearity using the procedure described above,

we build the logistic regression models with the variables remained after the prun-

ing. Then, for each model we analyze (i) whether each independent variable is

significantly correlated with the dependent variable (we consider a significance

level of ↵ = 5%), and (ii) we quantify such a correlation using the Odds Ratio (OR)

[185] which, for a logistic regression model, is given by eCi . The higher the OR for

an independent variable, the higher its ability to explain the dependent variable.

However, the interpretation of the OR changes between the two kinds of mod-

els we built, due to the different measurement scale of the independent variables,

i.e., ratio for the metric-based model and nominal (categorical) for the code smell-

based model. In particular, for the model built using quality metrics, the OR for an

independent variable indicates the increment of chances for a class to be subject

of refactoring in consequent of a one-unit increase of the independent variable.

For example, if we found that the CBO has an OR of 1.15 when building a logistic

regression model for the Extract Class refactoring operation, this means that for

each one-unit increase of the CBO value for a class, it has 15% higher chances of

being involved in an Extract Class refactoring operation. On the other side, for the

model built using code smells, the OR indicates the likelihood of a class affected

by a code smell of being involved in refactoring operations with respect to a non-

affected class. As example, if we found that the code smell Blob has an OR of 3

when building a logistic regression model for the Extract Class refactoring oper-

ation, this means that classes affected by the Blob code smell have 3 times higher

chances of being involved in an Extract Class refactoring operation than classes

not affected by it.

Finally, to verify the ability of refactoring in removing code smells from source

code, we simply analyze for each refactoring type (e.g., Extract class) the percent-

5http://cran.r-project.org/web/packages/car/index.html
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age of times it is able to remove each type of code smell (e.g., Blob class).

6.3 Empirical Study Results

This section discusses the results of our study, aimed at addressing the research

questions formulated in Section 9.3.1. As explained in Section 6.2.3, before build-

ing the logistic regression models, we performed a multi-collinearity analysis. As

a result of such analysis, we found that:

• For the models based on metrics, and only for the Xerces project, the stepwise

regression procedure removed the DIT metric from the logistic regression

model. Consistently with that, we found a strong (↵ = 0.83) Spearman’s rank

correlation between DIT and NOA. This is not entirely surprising as both

DIT and NOA capture information related to inheritance relations between

classes. No multi-collinearity was found for the other two projects (Apache

Ant and ArgoUML).

• For the models based on smells, no independent variable is affected by multi-

collinearity.

6.3.1 Are refactoring operations performed on classes having a

low-level of maintainability as indicated by quality met-

rics?

Table 6.7 reports the ORs of quality metrics obtained when building a logistic re-

gression model for data concerning each refactoring operation. Statistically sig-

nificant values, i.e., those for which the p-value is lower than 0.05, are reported in

bold face. In the following, we will mainly focus our discussion on such statisti-

cally significant values.

First, we can immediately notice that longer classes (in terms of LOC) generally

have a higher chance of being involved in a refactoring operations (the ORs for

LOC are higher than 1 in 71% of significant ORs). This is quite an expected result.
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Table 6.7: Quality metrics model: OR of metrics when building logistic model.

Statistically significant ORs are reported in bold face.

Refactoring System LOC WMC DIT NOC RFC CBO LCOM NOA NOO CCBC C3

add parameter ApacheAnt 3.51 0.40 0.39 1.24 1.61 0.41 1.26 0.59 0.98 0.75 0.22

add parameter ArgoUML 1.15 1.01 1.62 1.09 1.45 0.79 0.04 1.04 0.69 0.34 0.54

add parameter Xerces 1.06 2.26 - 1.13 0.67 1.10 0.66 1.31 0.99 0.30 0.56

consolidate cond expression ApacheAnt 0.27 22.35 1.00 0.90 1.58 0.36 0.23 0.14 1.04 1.54 0.34

consolidate cond expression ArgoUML 1.79 1.07 1.21 0.77 3.05 0.74 0.01 1.44 1.28 1.56 0.30

consolidate cond expression Xerces 1.30 9.54 - 1.07 0.63 1.01 0.78 1.10 1.13 1.49 0.36

consolidate duplicate cond fragments ApacheAnt 0.53 8.02 0.53 1.25 2.35 0.38 0.47 0.54 0.63 0.91 0.31

consolidate duplicate cond fragments ArgoUML 1.09 1.92 1.23 1.02 2.62 1.35 0.00 0.53 1.29 0.54 0.72

consolidate duplicate cond fragments Xerces 1.26 6.77 - 1.13 0.77 1.86 0.92 1.13 1.02 0.68 0.56

extract method ApacheAnt 0.83 5.84 0.40 1.24 2.42 0.58 0.31 0.34 0.84 0.78 0.20

extract method ArgoUML 1.29 0.27 1.55 1.03 2.40 1.12 0.05 0.94 0.86 0.35 0.28

extract method Xerces 1.16 0.64 - 1.11 1.33 1.49 0.66 0.99 1.08 0.67 0.28

extract superclass ArgoUML 2.56 0.36 0.45 1.11 0.65 1.04 0.00 0.68 0.38 0.95 0.06

form template method ArgoUML 4.10 0.00 0.00 1.82 0.88 1.18 0.00 2.94 1.82 0.00 0.38

inline method ApacheAnt 1.16 0.14 3.23 1.41 4.04 0.20 0.11 0.13 0.42 1.40 0.08

inline method ArgoUML 1.15 0.63 3.46 1.15 1.46 1.35 0.24 0.84 0.85 0.17 0.30

inline method Xerces 0.71 1.59 - 1.10 1.10 1.15 0.39 0.98 1.30 1.14 0.07

inline temp ApacheAnt 1.56 3.55 0.57 1.14 0.59 0.98 0.85 0.35 0.63 0.95 0.29

inline temp ArgoUML 1.17 0.96 1.58 0.43 1.02 1.31 0.16 0.78 0.94 0.82 0.29

inline temp Xerces 1.80 9.94 - 1.09 0.61 1.64 0.68 1.37 1.00 0.97 0.70

introduce assertion ArgoUML 0.13 0.68 6.97 0.68 6.23 1.83 0.02 0.27 0.00 0.83 0.39

introduce explaining variable ApacheAnt 1.54 0.81 1.14 1.29 1.88 0.61 1.04 0.10 0.18 1.04 0.16

introduce explaining variable ArgoUML 0.82 1.05 0.83 1.00 2.54 1.16 0.27 0.80 0.99 0.69 0.53

introduce explaining variable Xerces 1.00 4.12 - 1.11 0.86 1.81 0.97 1.04 1.02 0.80 0.46

introduce null object ArgoUML 0.42 1.90 1.12 0.97 0.00 2.21 0.00 4.91 2.53 1.52 0.92

introduce parameter object Xerces 0.88 2.97 - 1.08 1.33 0.25 0.15 1.36 0.91 0.00 0.06

move field ApacheAnt 7.53 0.02 2.80 1.35 6.82 0.12 1.51 0.43 0.47 0.65 0.23

move field ArgoUML 10.40 0.00 1.58 0.92 0.77 1.16 0.00 0.75 0.24 1.08 1.72

move field Xerces 1.07 2.63 - 1.00 0.61 1.58 0.89 1.04 1.10 0.55 0.10

move method ApacheAnt 1.41 0.10 0.51 1.39 7.13 0.25 0.77 1.04 0.37 1.13 0.83

move method ArgoUML 1.18 1.61 2.97 1.06 0.60 1.26 0.04 0.81 0.92 0.58 1.22

move method Xerces 1.03 2.91 - 0.82 0.50 1.29 0.71 1.18 1.12 0.50 0.13

pull up field Xerces 2.44 0.37 - 1.17 0.89 1.90 0.60 20.31 6.07 0.25 0.73

pull up method Xerces 1.71 0.00 - 0.03 0.00 4.20 0.00 8.26 20.91 0.45 0.00

push down field Xerces 5.49 0.22 - 2.34 0.06 0.86 0.44 0.31 1.64 0.23 1.43

push down method Xerces 29.65 0.00 - 1.54 0.00 3.00 0.07 0.32 1.42 0.38 1.18

remove assignment to parameters ApacheAnt 0.25 4.35 0.73 1.02 0.37 0.85 0.31 0.38 0.00 1.09 1.19

remove assignment to parameters ArgoUML 1.52 0.29 1.24 0.34 1.88 0.82 0.00 1.12 0.65 0.22 0.25

remove assignment to parameters Xerces 1.73 0.34 - 1.10 1.29 0.99 1.01 1.26 0.85 0.47 0.58

remove control flag ApacheAnt 0.23 5.47 0.32 0.13 1.06 0.16 0.24 0.26 0.69 1.59 0.46

remove control flag ArgoUML 1.38 2.19 1.47 0.97 1.65 1.06 0.10 1.53 0.37 0.69 0.22

remove control flag Xerces 2.32 1.68 - 0.85 0.66 1.15 0.75 0.92 0.91 0.37 0.39

remove parameter ApacheAnt 2.26 0.77 0.51 1.28 1.08 0.51 1.13 0.55 0.59 0.80 0.22

remove parameter ArgoUML 1.10 0.93 1.16 1.12 1.42 0.95 0.06 0.88 0.89 0.36 0.59

remove parameter Xerces 0.96 1.41 - 1.12 1.06 0.87 0.68 1.19 0.99 0.36 0.35

rename method ApacheAnt 10.76 0.00 3.08 1.73 9.88 0.13 0.95 0.07 0.08 1.03 0.03

rename method ArgoUML 1.29 0.90 1.01 1.13 0.98 1.22 0.12 1.10 0.96 0.34 0.26

rename method Xerces 0.62 8.61 - 1.05 0.35 0.83 0.64 1.27 1.30 0.77 0.09

replace data with object ArgoUML 0.38 0.95 2.38 1.19 1.20 1.57 0.12 1.02 0.19 0.01 0.39

replace data with object Xerces 1.81 1.47 - 0.96 0.36 1.32 1.40 1.26 1.31 0.24 0.15

replace exception with test Xerces 8.43 0.74 - 0.00 0.48 0.03 1.86 7.48 0.00 0.09 0.42

replace magic number with constant ApacheAnt 0.37 10.04 0.86 0.55 0.51 1.15 0.57 0.02 0.26 0.81 0.57

replace magic number with constant ArgoUML 1.95 0.04 1.87 0.28 2.18 0.56 0.76 0.77 0.57 0.12 0.26

replace magic number with constant Xerces 0.77 2.64 - 0.92 0.61 3.63 1.03 1.05 0.90 0.54 0.51

replace method with method object ApacheAnt 0.61 5.84 0.39 0.12 4.51 0.27 1.05 0.45 1.08 0.31 0.40

replace method with method object ArgoUML 1.21 0.80 2.16 0.97 1.17 1.68 0.10 0.74 0.91 0.77 0.68

replace method with method object Xerces 1.69 0.92 - 1.04 0.80 1.15 1.08 0.98 1.04 0.47 0.24

replace nested cond guard clauses ApacheAnt 0.22 8.92 1.31 0.42 1.11 0.87 0.09 0.93 0.62 0.61 1.26

replace nested cond guard clauses ArgoUML 0.66 3.86 0.44 0.98 2.50 0.87 0.01 1.48 0.86 1.03 0.55

replace nested cond guard clauses Xerces 1.64 1.56 - 1.09 0.94 1.42 0.87 0.96 1.06 0.76 0.19

separate query from modifier Xerces 0.76 3.31 - 1.04 0.42 1.63 0.60 1.33 0.54 3.56 0.95
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More interesting are the results—and in particular the observed OR values—for

the other metrics.

The WMC metric of a class, i.e., the sum of the McCabes’ cyclomatic complexity

of its methods, exhibits very high ORs for some of the refactoring operations deal-

ing with the simplification of methods inside a class. However, this is not always

true for all systems. In particular, classes having high WMC have:

• In Apache Ant (OR 22.35), a much higher chance of being involved in a

consolidate conditional expression refactoring, performed to simplifying a se-

quence of conditional expressions which produce the same result by com-

bining them into a single expression. The OR for WMC on this refactoring is

also very high on ArgoUML (9.54), even if not statistically significant.

• In Apache Ant (OR 5.47), a higher chance of being involved in a remove con-

trol flag refactoring, performed to replace a variable that is acting as a control

flag for a series of boolean expressions with a simpler break statement. In this

case, also on the other systems the OR is higher than 1, but not statistically

significant.

• In Apache Ant (OR 8.9), a higher chance of being involved in a replace nested

conditional with guard clauses refactoring, applied to methods in which the

conditional behavior does not make clear the normal path of execution. Also

in this case, on both other systems the OR is higher than 1, but not statistically

significant.

• In Xerces (OR 9.94), a higher chance of being involved in an inline temp

refactoring, performed to remove temporary variables that are only assigned

once with a simple expression. Also in Apache Ant the OR for this refac-

toring is high (3.55) but, again, not statistically significant.

Surprisingly, we did not find any statistically significant OR higher than one for

WMC on models built for the extract method refactoring (see Table 6.7).

Concerning DIT, the metric measuring the depth of a class as the number of

its ancestor classes, we expect strong ORs for refactoring operations dealing with
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changes applied to the class hierarchy (i.e., push down method, pull up method, pull

up field, push down field, form template method, and extract superclass). However, we

do not observe any statistically significant OR higher than one.

As for the NOC metric, counting the number of direct descendants (subclasses)

of a class, we expected high ORs for refactoring operations acting on the class

hierarchy. However, the ORs we found are either not statistically significant, or

very close to 1 (see Table 6.7).

NOA (the number of operations added by a subclass) and NOO (the number

of operations overridden by a subclass) are also related to class hierarchies and, in

such cases, results confirm the conjecture that such metrics can relate with refac-

torings. Firstly, both metrics show high ORs with the form template method refactor-

ing, which is often applied when in two subclasses there are very similar methods.

These two methods are generally merged into a single one that is pulled up in the

class hierarchy. For this reason, NOA and NOO also exhibit very high ORs with

the pull up method and pull up field refactorings, even if these are not statistically

significant.

RFC measures the coupling of a class and thus, we expect it to obtain high

ORs for refactoring operations allowing a coupling reduction (e.g., inline method,

move method, move field). Concerning the inline method refactoring, applied to

merge two very coupled methods, we found ORs higher than 1 for all object sys-

tems, showing that highly coupled classes have a higher chance of being involved

in such refactoring. However, for operations like move method and move field, we

found contradicting results. Specifically, for these two refactorings we found very

high ORs on Apache Ant (7.13 for move method and 6.82 for move field) together

with ORs lower than 1 on the other two systems. We also found very high ORs for

other refactoring operations that, however, do not allow to reduce coupling (see

e.g., rename method with an OR of 9.88 in Apache Ant).

CBO, also related to coupling, mainly exhibits high ORs for refactoring oper-

ations that are not related to a coupling reduction (e.g., replace method with method

object with an OR of 3.63 in Xerces). The only expected result we found is that

classes having high CBO (and thus, having several dependencies with other classes)
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have a higher chance of being involved in a push down method refactoring (OR

equals 3.00) and generally have a higher chance of being involved in all refactor-

ing operations moving code components among the class hierarchy. This result is

expected since classes having a high CBO are also more likely to have inheritance

dependencies with other classes. In fact, the CBO counts the number of objects

with which a class has dependencies, including inheritances.

Table 6.8: Quality metrics model: summary of results.

Metric
Refactoring operations related to the metric

Overlap
Expected Found

LOC All

add parameter; extract superclass;

form template method; inline temp

move field; move method; pull up

field; pull up method; push down

field; push down method; replace ex-

ception with test

39%

WMC

add parameter; consolidate cond ex-

pression; consolidate duplicate cond

fragments; extract method; remove

control flag; replace nested cond guard

clauses

consolidate cond expression; consol-

idate duplicate cond fragments; re-

move control flag; replace nested cond

guard clauses

67%

DIT
pull up method; pull up field; push

down field; push down method; form

template method; extract superclass

introduce null object 0%

NOC
pull up method; pull up field; push

down field; push down method; form

template method; extract superclass

add parameter; extract superclass; con-

solidate duplicate cond fragments; in-

troduce explaining variable; pull up

field; remove parameter

20%

RFC
inline method; move field; move

method

extract method; inline method; remove

parameter
20%

CBO

inline method; move field; move

method; pull up method; pull up field;

push down field; push down method;

form template method

introduce null object; pull up field;

push down method; replace data with

object

20%

LCOM move field; move method replace exception with test 0%

NOA
pull up method; pull up field; push

down field; push down method; form

template method; extract superclass

form template method 17%

NOO
pull up method; pull up field; push

down field; push down method; form

template method; extract superclass

form template method; push down

field
30%

CCBC

inline method; move field; move

method; pull up method; pull up

field; push down field; push down

method; form template method; re-

name method

separate query from modifier 0%

C3
move field; move method; rename

method
push down field; push down method 0%

The structural cohesion metric LCOM does not provide any interesting result,

generally showing low OR for the different refactoring operations. Some interest-

ing results were achieved for the semantic cohesion metric C3, for which we ob-

served an OR higher than 1 for move method and move field refactoring on ArgoUML.

This indicates that some responsibilities of classes having low C3 (conceptual co-

hesion) are extracted from such classes. Finally, concerning the semantic coupling
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metric CCBC, it shows a high OR for the separate query from modifier refactoring.

However, this refactoring operation does not deal with coupling reduction. While

in some cases ORs higher than 1 are obtained for refactoring reducing coupling

(e.g., move method on Apache Ant), as already observed for the structural cou-

pling metric RFC, this result is not confirmed on all the other systems, exhibiting

ORs lower than 1.

Table 6.8 summarizes the results achieved for the quality metrics model by

reporting for each of the investigated metrics:

1. The refactoring operations for which we expected some form of correlation.

For example, we expect that classes having a high WMC value (WMC mea-

sures the code complexity) are more subject to refactoring operations aiming

at reducing code complexity like, for example, extract method.

2. The refactoring operations for which we observed evidence of a relationship

with quality metrics profile. In this case we mean refactoring operations for

which we observed (i) a statistically significant OR higher than one for at

least one of the object systems and (ii) consistent results (i.e., OR higher than

one, even if not statistically significant) on the other systems.

3. The percentage of overlap between the set of expected refactorings (point

1) and the set of refactorings for which we actually observed some form of

correlation (point 2).

Table 6.9: Code smells identified in each system (among all analyzed versions).

System Blob CDSBP
Complex Lazy Long

LPL
Message Refused Spaghetti Speculative Feature

Class Class Method Chain Bequest Code Generality Envy

ApacheAnt 85 370 0 167 110 12 0 5 9 40 62

ArgoUML 196 343 67 351 151 31 0 56 28 185 291

Xerces 328 792 48 664 700 17 0 852 71 124 34

The analysis of Table 6.8 highlights that with very few exceptions, quality metrics

do not show a clear relationship with refactoring. The only exception is represented
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by the WMC metric, that seems to be able to indicate classes attracting the devel-

opers’ refactoring attentions. As for the other metrics, none of them showed with

strong evidence relation with refactoring. Particularly surprising are the results

achieved with cohesion and coupling metrics, generally considered good indica-

tors of source code components in need of refactoring [27]. It is important to point

out that we are not claiming the opposite being generally true, but just report-

ing that refactoring operations do not target classes exhibiting low cohesion and/or high

coupling as much as expected.

6.3.2 To what extent are refactoring operations (i) executed on

classes exhibiting code smells and (ii) able to remove code

smells?

Table 6.9 reports the number of classes affected by the different code smells we

identified in the analyzed releases. Note that, for each system, we report the over-

all number of code smells identified across all the analyzed releases. This means

that if a class is affected by a code smell in all the 33 analyzed Xerces releases, this

class has been counted 33 times. We did not find any Message Chain code smell.

Thus, we will not discuss it in the following results analysis.

Table 6.10 reports the ORs obtained for the considered code smells when build-

ing a logistic regression model for data concerning each refactoring operation (as

explained in Section 6.2). Moreover, we also show in Table 6.11, the number of

refactorings performed on each type of code smell, and in Table 6.12 the percent-

age of code smells removed when developers performed refactoring actions.

The analysis of ORs reported in Table 6.10 highlights that Blob classes are gen-

erally subject to refactoring. A Blob is a large class implementing different respon-

sibilities and centralizing most of the system behavior. Note that this is somewhat

an expected result, and consistent with the findings related to the metric model

(Table 6.8). Indeed, Blob classes are quite large in terms of LOCs and, as observed

while discussing the quality metrics results, larger classes generally have a higher

chance of being involved in a refactoring operation. This result is also confirmed
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Table 6.10: Code smell model: OR of smells when building logistic regression

model. Statistically significant ORs are reported in bold face.

Refactoring System Blob CDSBP
Complex Lazy Long

LPL
Refused Spaghetti Speculative Feature

Class Class Method Bequest Code Generality Envy

add parameter ApacheAnt 6.53 1.74 0.00 0.00 3.25 0.00 0.00 7.40 0.00 0.00

add parameter ArgoUML 2.66 1.83 0.00 0.12 3.62 0.00 0.85 0.00 0.86 1.02

add parameter Xerces 1.10 0.70 0.39 0.00 2.27 2.70 0.11 2.35 4.14 0.75

consolidate cond expression ApacheAnt 9.33 0.46 0.00 0.00 0.00 0.00 0.00 195.80 0.00 0.00

consolidate cond expression ArgoUML 3.29 0.90 0.00 0.00 5.16 0.00 0.00 0.00 0.00 3.71

consolidate cond expression Xerces 2.45 0.91 0.00 0.00 1.79 5.44 0.37 0.61 1.98 0.00

consolidate duplicate cond fragments ApacheAnt 2.72 1.55 0.00 0.00 0.00 0.00 0.00 0.04 3.96 0.00

consolidate duplicate cond fragments ArgoUML 2.34 2.66 0.00 0.00 3.84 0.00 0.00 0.00 0.00 2.74

consolidate duplicate cond fragments Xerces 1.40 1.08 1.84 0.00 5.33 4.49 0.90 1.97 1.80 3.44

extract method ApacheAnt 2.76 1.83 0.00 0.00 4.02 0.00 0.00 0.57 0.00 0.00

extract method ArgoUML 12.54 0.21 0.00 0.00 9.17 0.00 0.00 0.00 0.00 0.90

extract method Xerces 1.56 1.88 0.43 0.00 5.94 0.00 0.00 4.56 0.93 3.47

extract superclass ArgoUML 0.00 3.12 4.14 0.00 0.00 0.00 0.00 4.24 0.00 0.00

form template method ArgoUML 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

inline method ApacheAnt 2.43 0.84 0.00 0.00 45.79 0.00 0.00 1.14 0.00 0.00

inline method ArgoUML 0.00 1.87 0.00 0.00 0.00 0.00 0.00 85.92 0.00 1.35

inline method Xerces 3.29 1.62 0.00 0.00 3.23 0.00 0.00 0.00 0.22 5.41

inline temp ApacheAnt 8.80 2.89 0.00 0.00 11.63 0.00 0.00 0.00 0.00 0.00

inline temp ArgoUML 1.80 2.02 0.00 0.00 2.71 0.00 0.00 0.00 0.00 0.83

inline temp Xerces 2.28 1.41 1.13 0.00 5.02 2.10 0.00 0.00 2.18 0.00

introduce assertion ArgoUML 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.30 0.00 7.40

introduce explaining variable ApacheAnt 5.15 2.66 0.00 0.00 6.88 4.75 0.00 4.69 4.48 0.00

introduce explaining variable ArgoUML 1.56 0.78 0.00 0.00 5.06 0.00 0.00 0.00 0.00 2.14

introduce explaining variable Xerces 1.48 2.11 0.00 0.00 3.73 8.17 0.24 0.98 1.61 2.39

introduce null object ArgoUML 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

introduce parameter object Xerces 14.14 0.00 0.00 0.00 0.48 0.00 0.00 48.74 0.00 0.00

move field ApacheAnt 2.49 1.84 0.00 0.00 43.74 0.00 0.00 1.82 0.00 0.00

move field ArgoUML 0.00 1.64 0.00 0.00 0.00 0.00 0.00 22.15 0.00 8.03

move field Xerces 1.65 0.66 0.00 0.53 1.27 0.00 0.00 0.00 2.04 0.00

move method ApacheAnt 1.43 0.49 0.00 0.00 2.92 0.00 0.00 0.00 0.00 0.00

move method ArgoUML 0.00 1.71 22.35 0.00 0.61 0.00 0.00 0.00 1.13 0.44

move method Xerces 2.46 0.05 0.00 0.00 1.10 0.00 0.00 0.00 0.27 0.00

pull up field Xerces 0.00 3.55 19.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00

pull up method Xerces 11.95 0.00 17.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00

push down field Xerces 16.43 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00

push down method Xerces 26.79 0.00 16.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00

remove assignment to parameters ApacheAnt 3.27 1.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

remove assignment to parameters ArgoUML 2.36 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.36

remove assignment to parameters Xerces 0.92 0.89 8.79 0.00 2.00 6.47 0.00 0.00 2.82 0.00

remove control flag ApacheAnt 8.13 0.67 0.00 0.00 5.69 0.00 0.00 0.00 0.00 0.00

remove control flag ArgoUML 0.40 0.87 0.08 0.00 26.12 0.00 0.00 0.00 0.54 9.35

remove control flag Xerces 1.82 0.85 3.18 0.00 2.85 0.00 0.53 2.24 2.29 0.00

remove parameter ApacheAnt 6.54 2.17 0.00 0.00 5.76 0.00 0.00 3.19 0.00 0.00

remove parameter ArgoUML 3.28 2.38 0.00 0.14 3.85 0.00 0.99 0.00 1.23 0.66

remove parameter Xerces 1.16 0.97 0.45 0.00 2.76 1.38 0.12 2.69 1.38 1.52

rename method ApacheAnt 2.73 2.29 0.00 0.00 76.36 0.00 0.00 1.36 0.00 0.00

rename method ArgoUML 0.00 1.21 0.00 0.00 0.00 0.00 0.00 189.30 2.37 0.54

rename method Xerces 14.05 0.91 0.00 0.00 1.68 0.91 0.10 0.00 0.07 0.39

replace data with object ArgoUML 0.00 4.16 21.65 0.00 0.00 0.00 0.00 43.26 0.00 0.00

replace data with object Xerces 2.95 1.02 0.00 0.00 1.14 0.00 0.00 0.00 5.07 0.00

replace exception with test Xerces 0.74 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00

replace magic number with constant ApacheAnt 1.14 3.59 0.00 0.00 1.01 3.41 0.00 2.12 1.00 0.00

replace magic number with constant ArgoUML 4.63 17.43 0.00 0.00 0.00 0.00 0.00 0.00 1.27 0.00

replace magic number with constant Xerces 1.31 2.08 0.00 0.00 2.36 0.00 0.12 0.00 3.58 0.45

replace method with method object ApacheAnt 16.46 4.43 0.00 0.00 0.00 0.00 0.00 13.70 0.00 0.00

replace method with method object ArgoUML 0.44 1.79 0.00 0.00 3.90 0.00 1.11 0.00 0.00 1.14

replace method with method object Xerces 3.41 0.80 0.41 0.00 1.53 0.00 0.00 6.71 3.92 1.05

replace nested cond guard clauses ApacheAnt 3.09 0.84 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.00

replace nested cond guard clauses ArgoUML 0.00 1.48 0.00 0.00 0.00 0.00 0.00 1.40 0.00 6.52

replace nested cond guard clauses Xerces 1.06 0.99 0.00 0.00 11.34 0.00 0.46 3.97 2.75 0.59

separate query from modifier Xerces 5.94 0.00 0.00 0.00 3.82 0.00 0.00 0.00 0.00 0.00
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by the fact that developers of the three object systems performed a total of 1,753

refactoring operations on classes affected by the Blob code smell (see Table 6.11).

However, the data in Table 6.12 shows that the refactoring operations that

actually removed the Blob code smell are mainly two: move method and move

field. Specifically, in Xerces (the only system for which we have a good number

of move method and move field refactoring operations performed on Blob classes),

move method refactoring removes the Blob code smell in 71% of cases while move

field refactoring in 30% of cases. By performing a manual analysis of such cases,

we discovered as often a set of move method refactorings is performed to com-

pletely remove a responsibility from the Blob class and, in some cases, move method

and move field refactorings are performed together as extract class refactoring (this

type of refactoring is not detected by REF-FINDER). For example, the class of the

Xerces system named XSchemaValidator has been refactored by the develop-

ers between releases 1.0.0 and 1.0.4. XSchemaValidator was composed of 100

methods and 74 attributes and, as stated in its comment, was an “experimental

implementation of a validator for the W3C schema language”. Developers removed

this Blob class from the system by splitting its responsibilities across three new

classes extracted from it in release 1.0.4 (i.e., Schema, SchemaImporter, and

SchemaParser). This was done by (i) partially rewriting the code present in class

XSchemaValidator, and (ii) by performing 52 move field and 31 move method op-

erations from XSchemaValidator to the three new extracted classes.

Thus, while a Blob class generally represents a catalyst of several refactoring

operations due to its size (i.e., high LOCs), move method and move field refactor-

ings (or in combination as extract class) seem to be the only refactoring operations

effective in removing this design problem from the system.

Classes affected by the Class Data Should Be Private (CDSBP) code smell also

attracted several refactoring operations. However, it is worth noting that this is

mainly due to the fact that this is the most diffused code smell we found (see Table

6.9). In fact, as shown in Table 6.12, no refactoring operations removed this code

smell. The refactoring operation having this goal is the encapsulate field. However,

we only found one instance of this refactoring in the ArgoUML system. What in-
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Table 6.11: Number of refactorings performed on each type of code smell.

Refactoring System Blob CDSBP
Complex Lazy Long

LPL
Refused Spaghetti Speculative Feature

Class Class Method Bequest Code Generality Envy

add parameter ApacheAnt 20 18 0 0 33 0 0 24 0 0

add parameter ArgoUML 15 23 0 1 13 0 1 0 4 19

add parameter Xerces 131 63 3 0 201 5 3 18 71 5

consolidate cond expression ApacheAnt 5 2 0 0 3 0 0 3 0 0

consolidate cond expression ArgoUML 2 1 0 0 2 0 0 0 0 6

consolidate cond expression Xerces 46 15 0 0 44 3 2 1 10 0

consolidate duplicate cond fragments ApacheAnt 6 9 0 0 0 0 0 0 1 0

consolidate duplicate cond fragments ArgoUML 3 6 0 0 3 0 0 0 0 9

consolidate duplicate cond fragments Xerces 125 43 10 0 193 6 9 12 33 15

extract method ApacheAnt 7 10 0 0 9 0 0 2 0 0

extract method ArgoUML 16 1 0 0 10 0 0 0 0 6

extract method Xerces 53 24 1 0 84 0 0 11 10 7

extract superclass ArgoUML 0 1 0 0 0 0 0 0 0 0

form template method ArgoUML 0 0 0 0 0 0 0 0 0 0

inline method ApacheAnt 2 1 0 0 16 0 0 6 0 0

inline method ArgoUML 0 1 0 0 0 0 0 0 0 1

inline method Xerces 31 8 0 0 31 0 0 0 1 6

inline temp ApacheAnt 15 13 0 0 12 0 0 0 0 0

inline temp ArgoUML 2 5 0 0 2 0 0 0 0 3

inline temp Xerces 37 15 2 0 47 1 0 0 12 0

introduce assertion ArgoUML 0 0 0 0 0 0 0 0 0 3

introduce explaining variable ApacheAnt 17 19 0 0 38 1 0 24 1 0

introduce explaining variable ArgoUML 2 2 0 0 4 0 0 0 0 8

introduce explaining variable Xerces 45 29 0 0 63 4 1 2 14 4

introduce null object ArgoUML 0 0 0 0 0 0 0 0 0 0

introduce parameter object Xerces 8 0 0 0 4 0 0 3 0 0

move field ApacheAnt 5 5 0 0 43 0 0 20 0 0

move field ArgoUML 0 13 0 0 0 0 0 0 0 0

move field Xerces 53 4 0 0 42 0 0 0 5 0

move method ApacheAnt 1 1 0 0 2 0 0 0 0 0

move method ArgoUML 0 15 3 0 4 0 0 0 2 4

move method Xerces 71 3 0 0 62 0 0 0 3 0

pull up field Xerces 0 0 0 0 0 0 0 0 0 0

pull up method Xerces 5 0 0 0 0 0 0 0 0 0

push down field Xerces 9 0 0 0 7 0 0 0 0 0

push down method Xerces 0 0 0 0 0 0 0 0 0 0

remove assignment to parameters ApacheAnt 5 7 0 0 0 0 0 0 0 0

remove assignment to parameters ArgoUML 1 1 0 0 0 0 0 0 0 2

remove assignment to parameters Xerces 12 6 4 0 18 1 0 0 6 0

remove control flag ApacheAnt 5 2 0 0 4 0 0 0 0 0

remove control flag ArgoUML 1 3 1 0 21 0 0 0 0 44

remove control flag Xerces 26 4 0 0 42 0 0 0 5 0

remove parameter ApacheAnt 20 19 0 0 29 0 0 16 0 0

remove parameter ArgoUML 16 26 0 1 12 0 1 0 5 11

remove parameter Xerces 91 42 2 0 140 2 2 15 22 7

rename method ApacheAnt 13 14 0 0 112 0 0 44 0 0

rename method ArgoUML 0 8 0 0 0 0 0 0 5 5

rename method Xerces 563 62 0 0 339 6 2 0 4 9

replace data with object ArgoUML 0 1 0 0 0 0 0 0 0 0

replace data with object Xerces 11 5 0 0 9 0 0 0 5 0

replace exception with test Xerces 1 0 0 0 1 0 0 0 0 0

replace magic number with constant ApacheAnt 17 62 0 0 16 1 0 8 1 0

replace magic number with constant ArgoUML 9 46 0 0 0 0 0 0 2 0

replace magic number with constant Xerces 104 101 0 0 144 0 2 0 64 2

replace method with method object ApacheAnt 17 17 0 0 0 0 0 0 0 0

replace method with method object ArgoUML 2 16 0 0 10 0 1 0 0 15

replace method with method object Xerces 59 17 1 0 55 0 0 9 18 2

replace nested cond guard clauses ApacheAnt 1 1 0 0 0 0 0 0 0 0

replace nested cond guard clauses ArgoUML 0 1 0 0 0 0 0 0 0 6

replace nested cond guard clauses Xerces 37 16 0 0 79 0 1 10 17 1

separate query from modifier Xerces 10 0 0 0 9 0 0 0 0 0
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Table 6.12: Perc. of smells removed by each refactoring. In bold values for which

a refactoring has been applied at least 10 times on a smell.

Refactoring System Blob CDSBP
Complex Lazy Long

LPL
Refused Spaghetti Speculative Feature

Class Class Method Bequest Code Generality Envy

add parameter ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

add parameter ArgoUML 0% 0% 0% 0% 15% 0% 100% 0% 50% 16%

add parameter Xerces 4% 0% 0% 0% 6% 0% 0% 6% 7% 100%

consolidate cond expression ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

consolidate cond expression ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 17%

consolidate cond expression Xerces 2% 0% 0% 0% 2% 0% 0% 0% 0% 0%

consolidate duplicate cond fragments ApacheAnt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

consolidate duplicate cond fragments ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

consolidate duplicate cond fragments Xerces 2% 0% 0% 0% 1% 0% 0% 25% 12% 93%

extract method ApacheAnt 0% 0% 0% 0% 22% 0% 0% 100% 0% 0%

extract method ArgoUML 0% 0% 0% 0% 40% 0% 0% 0% 0% 50%

extract method Xerces 0% 0% 0% 0% 11% 0% 0% 0% 0% 100%

extract superclass ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

form template method ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

inline method ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

inline method ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

inline method Xerces 3% 0% 0% 0% 3% 0% 0% 0% 0% 100%

inline temp ApacheAnt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

inline temp ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 33%

inline temp Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

introduce assertion ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 67%

introduce explaining variable ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

introduce explaining variable ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 13%

introduce explaining variable Xerces 0% 0% 0% 0% 3% 0% 0% 0% 0% 100%

introduce null object ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

introduce parameter object Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

move field ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

move field ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

move field Xerces 30% 0% 0% 0% 0% 0% 0% 0% 0% 0%

move method ApacheAnt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

move method ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

move method Xerces 73% 0% 0% 0% 0% 0% 0% 0% 0% 0%

pull up field Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

pull up method Xerces 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

push down field Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

push down method Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

remove assignment to parameters ApacheAnt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

remove assignment to parameters ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 50%

remove assignment to parameters Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

remove control flag ApacheAnt 0% 0% 0% 0% 25% 0% 0% 0% 0% 0%

remove control flag ArgoUML 0% 0% 0% 0% 81% 0% 0% 0% 0% 9%

remove control flag Xerces 4% 0% 0% 0% 14% 0% 0% 0% 0% 0%

remove parameter ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

remove parameter ArgoUML 0% 0% 0% 0% 7% 0% 100% 0% 60% 27%

remove parameter Xerces 5% 0% 0% 0% 9% 0% 0% 0% 9% 100%

rename method ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

rename method ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

rename method Xerces 9% 0% 0% 0% 57% 0% 0% 0% 0% 100%

replace data with object ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

replace data with object Xerces 7% 0% 0% 0% 11% 0% 0% 0% 0% 0%

replace exception with test Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

replace magic number with constant ApacheAnt 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

replace magic number with constant ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

replace magic number with constant Xerces 0% 0% 0% 0% 4% 0% 0% 0% 19% 100%

replace method with method object ApacheAnt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

replace method with method object ArgoUML 0% 0% 0% 0% 30% 0% 100% 0% 0% 13%

replace method with method object Xerces 5% 0% 0% 0% 4% 0% 0% 0% 0% 100%

replace nested cond guard clauses ApacheAnt 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

replace nested cond guard clauses ArgoUML 0% 0% 0% 0% 0% 0% 0% 0% 0% 17%

replace nested cond guard clauses Xerces 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

separate query from modifier Xerces 0% 0% 0% 0% 22% 0% 0% 0% 0% 0%
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stead stands out from the analysis of the ORs reported in Table 6.10, is that classes

affected by CDSBP have a much higher chance of being involved in replace magic

number with constant refactoring operations (this chance is up to 17.43 higher). By

manually analyzing those cases, we did not find a clear explanation for this phe-

nomenon. However, two possible explanations are plausible from our point of

view. The first is that developers are more prone to add new class fields (and thus

to apply replace magic number with constant refactoring) in classes already contain-

ing fields (like those affected by the CDSBP code smell). The second is that the

introduction of this code smell is favored by the application of the replace magic

number with constant refactoring. Indeed, such refactoring implies the introduction

of a new field within the class and it is possible that the added field is publicly

exposed, introducing a CDSBP.

Particularly interesting are the results achieved for Complex and Lazy Classes.

Both are poorly refactored by developers. On the one side, Lazy Classes are very

simple classes, thus they should not create too much trouble during maintenance

activities, and consequently developers are not particularly motivated to refactor

them. For example, the interface LayoutedObject from ArgoUML reported in

Listing 6.1 has never been refactored by ArgoUML developers until the last release

considered in our study (0.34). Hence, this is an expected result.

1 package org.argouml.uml.diagram.layout;

// This is the most common form of an layouted

3 // object.

public interface LayoutedObject {

5 }

Listing 6.1: Example of a Lazy Class never refactored by developers in ArgoUML

On the other side, the reason behind the very few refactorings performed on

Complex Classes is likely their complexity. In total, we observed just 27 refac-

toring operations on the 115 complex classes involved in our study (to be com-

pared, as example, to the 1,753 performed on the 609 Blob classes). For example,

the Complex Class RegularExpression from the Xerces system has never been
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refactored by the developers. By looking inside its source code we found that

RegularExpression is a large class composed of 3,155 LOCs, and the 32 meth-

ods contained in it are very complex. To get an idea, these methods contain in total

126 switch case statements and 536 if else statements. Thus, refactoring this

class would be very challenging for developers.

Conversely, classes containing Long Methods are widely refactored, for a to-

tal of 2,012 total refactorings. Firstly, it is interesting to note that 35% of classes

affected by Long Methods are also Blobs and, as these latter, they also catalyze

the refactoring attention of developers. In particular, classes affected by this code

smell have:

• from 2.27 to 3.62 times more chances of being involved in an add parameter

refactoring;

• from 4.02 to 9.17 times more chances of being involved in an extract method

refactoring;

• form 3.23 to 45.79 times more chances of being involved in an inline method

refactoring (no data for ArgoUML);

• from 3.73 to 6.88 times more chances of being involved in an introducing ex-

plaining variable refactoring;

• from 2.85 to 26.12 times more chances of being involved in a remove control

flag refactoring;

• from 2.76 to 5.76 times more chances of being involved in a remove parameter

refactoring;

• from 1.68 to 76.36 times more chances of being involved in a rename method

refactoring (no data for ArgoUML).

However, as shown in Table 6.12, only some of these refactorings are applied by

developers with the aim of removing the Long Method. The refactoring more

often removing a Long Method is the remove control flag that helps in removing
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the code smell by reducing the method length. As expected, the other refac-

toring often removing the Long Method is the extract method, representing the

most natural solution to this code smell. This refactoring has been applied by

Xerces developers between release 2.7.1 and release 2.8.0 on the Long Method

DOMSerializerImpl.writeToString(Node wnode) to extract from it three

new methods (i.e., getXmlVersion(Node node), getInputEncoding(Node

node), getXmlEncoding(Node node)), each one implementing a specific re-

sponsibility.

Table 6.13: Code Smell model: Summary of the achieved results

Code Smell
Refactoring operations related to the metric

Overlap
Expected Found

Blob extract class; move method; move field

extract class (as combination of

move method and move field); move

method; move field

100%

CDSBP encapsulate field replace magic number with constant 0%

Complex Class
extract method; consolidate condi-

tional expression; move method; ex-

tract class

- 0%

Lazy Class inline class - 0%

Long Method
extract method; remove control flag;

consolidate conditional expression

extract method; remove control flag;

consolidate conditional expression;

add parameter; remove parameter;

inline method; introducing explaining

variable; rename method

38%

LPL introduce parameter object - 0%

Refused Bequest
push down method; push down field;

replace inheritance with delegation
- 0%

Spaghetti Code add parameter add parameter; remove parameter 50%

Speculative Generality collapse hierarchy - 0%

Feature Envy
move method; extract method; consol-

idate duplicate conditional fragments

consolidate duplicate conditional frag-

ments
33%

It can also be noted that the high number of extract method refactorings partially

explains the high number of rename method refactorings performed on long meth-

ods. Indeed, the method undergoing an extract method refactoring is generally also

renamed to reflect its new purpose. As for the add parameter refactoring, it some-

times helps to remove a Long Method. This is due to the fact that computations
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previously performed inside the method to obtain a result r are now required to

the classes invoking the long method through the passing of r as parameter.

As for the other refactorings previously mentioned (i.e., inline method, introduc-

ing explaining variable, remove parameter) they are massively performed on classes

affected by Long Method mainly due to the long size of the involved code compo-

nent.

The Long Parameter List (LPL) code smell is rarely refactored by developers

(just 30 refactorings in total) as well as the Refused Bequest code smell (25 refac-

torings). Classes affected by the Spaghetti Code code smell have a higher chance

of being involved in an add parameter refactoring. This is a very expected result. In

fact, these classes are generally composed by methods with few (or no) parame-

ters. Note that, as shown in Table 6.12, this refactoring is able to remove the code

smell in 100% of cases on ApacheAnt. However, a deeper analysis, reported in

Table 6.12, reveals that also the remove parameter refactoring removes the Spaghetti

Code code smell in 100% of cases on ApacheAnt. Our manual analysis revealed

that the 16 remove parameter performed on Spaghetti Code in ApacheAnt were al-

ways executed together with an add parameter refactoring. In particular, the pa-

rameter was generally moved from methods having more than one parameter to

methods having no parameters inside the same class.

For the Speculative Generality code smell, we did not observe any particu-

lar result, while it is interesting to note that in 93% of cases a consolidate duplicate

conditional fragments refactoring operation is able to remove a Feature Envy code

smell on Xerces (the only system on which we have data for this refactoring). This

refactoring removes a fragment of code that is present in more than one branch

of a conditional expression. This means that often, a high coupling between one

method and the “envied class” (i.e., the class causing the Feature Envy in which

the method should moved) is not really needed, but just emphasized by dupli-

cated code.

In summary, 5,425 of the analyzed 12,922 refactoring operations are performed on

code smells (42%). However, of these 5,425 only 933 actually removed the code smell

from the affected class (7% of total operations) and 895 are attributable to only four
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code smells (i.e., Blob, Long Method, Spaghetti Code, and Feature Envy). Table

6.13 summarizes our findings for the studied code smells, highlighting for each

of them (i) the refactoring operations for which we expected a correlation with the

presence of code smells, (ii) the refactoring operations that we identified as applied

on the code smell and able to often remove it, and (iii) the percentage overlap

between the two previous explained sets. Looking at Table 6.13 we conclude that:

• Only some of the analyzed code smells, such as Blob, Long Method, Spaghetti Code,

and Feature Envy, actually increase the chances of the affected classes of being refac-

tored.

• The effectiveness of refactoring operations in removing code smells is generally low.

In the analyzed project releases, only 7% of the smells are removed through refactor-

ing operations.

6.4 Threats to Validity

This section discusses the threats that could affect the validity of our study. Threats

to construct validity concern the relationship between theory and observation. The

most important threat to construct validity to be discussed is how we assess source

code quality in this chapter. Specifically, we have chosen to use source code met-

rics, namely LOC, Chidamber & Kemerer metrics, conceptual cohesion and cou-

pling. Clearly, there may be other metrics that may capture software quality, for

example metrics computed by means of dynamic analysis. Nevertheless, as ex-

plained in Section 6.2.2, we have chosen a mix of metrics capturing source code

size, structural and lexical characteristics. Another threat to validity concerns the

identification of code smells. As explained in Section 6.2.2, we used a constraint-

based approach to perform a preliminary detection of code smells (using low

threshold values to avoid reducing the recall) followed by a manual analysis per-

formed by two independent evaluators (with the aim of reducing imprecision and

subjectiveness). Despite such process, we cannot exclude that some code smells

were missed by our analysis or that false positives were considered. Finally, sim-
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ilar issues apply to the investigated refactorings, selected through a manual vali-

dation over an initial set detected by REF-FINDER. As pointed out by its authors

[172], REF-FINDER has a very good recall (95%) while the precision is a bit lower

(79%). However, in this study we back-up possible imprecisions by complement-

ing REF-FINDER by manual validation.

Threats to conclusion validity concern the relationship between treatment and

outcome. We use logistic regression models to identify correlations between met-

ric values, and the presence of code smells with refactoring actions. Other than

highlighting cases of significant correlations, we report and discuss OR values.

Threats to internal validity concern factors that could influence our observa-

tions. In particular, the fact that code smells disappear, may or may not be re-

lated to refactoring activities occurred between the observed releases. In other

words, other changes could have produced such effects. However, although the

performed analyses and the obtained results allow us to claim correlation and not

causation, we corroborate our quantitative results by means of some qualitative

analysis, aimed at illustrating examples in which specific kinds of refactorings

helped to remove some code smells.

Threats to external validity concern the generalization of our findings. The study

is limited to three Java projects, because we preferred to observe fewer projects

over a long period of evolution history, rather than many projects for a short pe-

riod. This better allowed us to observe refactorings, that often happen during

specific periods of a project lifetime [8]. We considered open source systems for

our analysis, since the source code of commercial ones are not available. However,

we provided data and tools used for the investigation in order to allow a replica-

tion on different (both open source and commercial) systems. Last, but not least,

as mentioned in Section 6.2, this choice to analyze few systems was also due to the

need for manually validating refactorings and smells, rather than just relying on

tool output. In any case, further studies are therefore needed to confirm (or refute)

our results. Also, the findings obtained for the investigated code smells may or

may not apply to other kinds of code smells, for example those—such as Divergent

Change or Parallel Inheritance—that can be detected using change history metrics
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[52].

6.5 Conclusion

This chapter reported an empirical study aimed at investigating the characteristics

of code components increasing their changes of being subject to refactoring oper-

ations. In particular, we verified whether refactoring activities occur on classes for

which certain indicators—such as quality metrics or the presence of smells as de-

tected by tools—suggest there might be need for refactorings. The study has been

conducted on 63 releases of three open source projects, and required the manual

analysis of 15,008 refactoring operations and 5,478 smells.

Our results highlighted that, with very few exceptions, quality metrics do not

show a clear relationship with refactoring. One possible interpretation of such a

finding can be found in our survey performed with developers about their per-

ception about some code smells [50] (presented in Chapter 5). Indeed, on the one

hand developers found that only particularly serious smells (in terms of metrics)

are worthwhile of being refactored. On the other hand, they also pointed out

that in some cases metrics may not be per se indicators of smells: for example,

some classes—e.g., implementing parsers or complex algorithms—might intrinsi-

cally exhibit anomalous metric profiles, without necessarily being considered as

refactoring opportunities.

Almost 40% of the analyzed refactorings has been performed on classes af-

fected by smells. However, just 7% of them actually removed the smell. In other

words, it is possible that the refactoring only mitigated the problem, without how-

ever necessarily removing completely the smell.

This work is mainly exploratory in nature, as it is aimed at empirically in-

vestigating a phenomenon—which characteristics of classes promote refactoring

operations—from a quantitative point-of-view. Nevertheless, there are different

possible uses one can make of the results of this chapter. When building recom-

mendation tools aimed at highlighting refactoring opportunities to developers it

must be taken into account that, at least among the code characteristics considered
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in this chapter—i.e., code metrics, presence of smells—there is no silver bullet able

to indicate which code artifacts are in need of refactoring. Future work in this area

should aim at learning something from the past refactorings made by developers,

in order to suggest refactoring recommendations more suitable for them.

Also, when evaluating refactoring recommendation tools the developer’s point-

of-view cannot be ignored. Often such tools are just evaluated by verifying if

the refactorings they recommend are able to improve some quality metric val-

ues and/or to remove smells. However, our study indicates that the developer’s

point-of-view of classes in need of refactoring does not always match with these

“quality indicators”.
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ALTERNATIVE SOURCES OF INFORMATION FOR CODE

SMELL DETECTION
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Chapter 7

Mining Version Histories for

Detecting Code Smells

7.1 Introduction

Code smells have been defined by Fowler [8] as symptoms of poor design and

implementation choices. In some cases, such symptoms may originate from activ-

ities performed by developers while in a hurry, e.g., implementing urgent patches

or simply making suboptimal choices. In other cases, smells come from some re-

curring, poor design solutions, also known as anti-patterns [61]. For example a

Blob is a large and complex class that centralizes the behavior of a portion of a sys-

tem and only uses other classes as data holders. Blob classes can rapidly grow out

of control, making it harder and harder for developers to understand them, to fix

bugs, and to add new features.

Previous studies have found that smells hinder comprehension [18], and pos-

sibly increase change- and fault-proneness [16, 17]. In summary, smells need to

be carefully detected and monitored and, whenever necessary, refactoring actions

should be planned and performed to deal with them.

There exist a number of approaches for detecting smells in source code to alert

developers of their presence [21, 20, 25]. These approaches rely on structural infor-

mation extracted from source code, for example, by means of constraints defined
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on some source code metrics. For instance, according to some existing approaches,

such as DECOR [20], LongMethod or LargeClass smells are based on the size of the

source code component in terms of LOC, whereas other smells like ComplexClass

are based on the McCabe cyclomatic complexity [186].

Although existing approaches exhibit good detection accuracy, they still might

not be adequate for detecting many of the smells described by Fowler [8]. In par-

ticular, there are some smells that, rather than being characterized by source code

metrics or other information extracted from source code snapshots, are intrinsi-

cally characterized by how source code changes over time. For example, a Parallel In-

heritance means that two or more class hierarchies evolve by adding code to both

classes at the same time. Also, there are smells that are traditionally detected using

structural information, where historical information can aid in capturing comple-

mentary, additionally useful properties. For example, a Feature Envy may manifest

itself when a method of a class tends to change more frequently with methods of

other classes rather than with those of the same class.

Based on such considerations, we propose HIST (Historical Information for

Smell deTection), an approach to detect smells based on change history informa-

tion mined from versioning systems, and, specifically, by analyzing co-changes oc-

curring between source code artifacts. HIST is aimed at detecting five smells from

Fowler [8] and Brown [61] catalogues. Three of them—Divergent Change, Shotgun

Surgery, and Parallel Inheritance—are symptoms that can be intrinsically observed

from the project’s history even if a single project snapshot detection approach has

been proposed for the detection of Divergent Change and Shotgun Surgery [79]. For

the remaining two—Blob and Feature Envy—there exist several single project snap-

shot detection approaches [20, 25]. However, as explained for the Feature Envy,

those smells can also be characterized and possibly detected using source code

change history.

In the past, historical information has been used in the context of smell analy-

sis for the purpose of assessing to what extent smells remained in the system for

a substantial amount of time [15, 12]. Also, Gı̂rba et al. [187] exploited formal

concept analysis for detecting co-change patterns, that can be used to detect some
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smells. However, to the best of our knowledge, the use of historical information

for smell detection remains a premiere of this thesis.

We have evaluated HIST on twenty Java projects, aimed at evaluating its de-

tection accuracy in terms of precision and recall against a manually-produced or-

acle. Furthermore, wherever possible, we compared HIST with results produced

by approaches that detect smells by analyzing a single project snapshot, such as

JDeodorant [25, 67] (for the Feature Envy smell) and our re-implementations of the

DECOR’s [20] detection rules (for the Blob smell) and of the approach by Rao et al.

[79] (for Divergent Change and Shotgun Surgery). The results of our study indicate

that HIST’s precision is between 72% and 86%, and its recall is between 58% and

100%. When comparing HIST to alternative approaches, we observe that HIST

tends to provide better detection accuracy, especially in terms of recall, since it

is able to identify smells that other approaches omit. Also, for some smells, we

observe a strong complementarity of the approaches based on a single snapshot

analysis with respect to HIST, suggesting that even better performances can be

achieved by combining these two complementary sources of information.

7.2 Detecting Code Smells Using Change History In-

formation

The key idea behind HIST is to identify classes affected by smells via change

history information derived from version control systems. Fig. 7.1 overviews

the main steps behind the proposed approach. Firstly, HIST extracts information

needed to detect smells from the versioning system through a component called

Change history extractor. This information—together with a specific detection algo-

rithm for a particular smell—is then provided as an input to the Code smell detector

for computing the list of code components (i.e., methods/classes) affected by the

smells characterized in the specific detection algorithm.

The Code smell detector uses different detection heuristics for identifying target

smells. We have instantiated HIST for detecting the five smells summarized in the
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Figure 7.1: HIST: The proposed code smell detection process.

following:

• Divergent Change: this smell occurs when a class is changed in different ways

for different reasons. The example reported by Fowler in his book on refac-

toring [8] helps understanding this smell: If you look at a class and say, “Well,

I will have to change these three methods every time I get a new database; I have

to change these four methods every time there is a new financial instrument”, you

likely have a situation in which two classes are better than one [8]. Thus, this type

of smell clearly triggers Extract Class refactoring opportunities1. Indeed, the

goal of Extract Class refactoring is to split a class implementing different re-

sponsibilities into separated classes, each one grouping together methods

and attributes related to a specific responsibility. The aim is to (i) obtain

smaller classes that are easier to comprehend and thus to maintain and (ii)

better isolate the change.

• Shotgun Surgery: a class is affected by this smell when a change to this class

(i.e., to one of its fields/methods) triggers many little changes to several other

classes [8]. The presence of a Shotgun Surgery smell can be removed through

1Further details about refactoring operations existing in the literature can be found in the refac-

toring catalog available at:

http://refactoring.com/catalog/
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a Move Method/Field refactoring. In other words, the method/field causing

the smell is moved towards the class in which its changes trigger more mod-

ifications.

• Parallel Inheritance: this smell occurs when “every time you make a subclass of

one class, you also have to make a subclass of another” [8]. This could be symptom

of design problems in the class hierarchy that can be solved by redistributing

responsibilities among the classes through different refactoring operations,

e.g., Extract Subclass.

• Blob: a class implementing several responsibilities, having a large number of

attributes, operations, and dependencies with data classes [61]. The obvious

way to remove this smell is to use Extract Class refactoring.

• Feature Envy: as defined by Fowler [8], this smell occurs when “a method

is more interested in another class than the one it is actually in”. For instance,

there can be a method that frequently invokes accessor methods of another

class to use its data. This smell can be removed via Move Method refactoring

operations.

Our choice of instantiating the proposed approach on these smells is not ran-

dom, but driven by the need to have a benchmark including smells that can be

naturally identified using change history information and smells that do not nec-

essarily require this type of information. The first three smells, namely Divergent

Change, Shotgun Surgery, and Parallel Inheritance, are by definition historical smells,

that is, their definition inherently suggests that they can be detected using revision

history. Instead, the last two smells (Blob and Feature Envy) can be detected rely-

ing solely on structural information, and several approaches based on static source

code analysis of a single system’s snapshot have been proposed for detecting those

smells [20, 25].

The following subsections detail how HIST extracts change history information

from versioning systems and then uses it for detecting the above smells.
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7.2.1 Change History Extraction

The first operation performed by the Change history extractor is to mine the ver-

sioning system log, reporting the entire change history of the system under anal-

ysis. This can be done for a range of versioning systems, such as SVN, CVS, or

Git. However, the logs extracted through this operation report code changes at

file level of granularity. Such a granularity level is not sufficient to detect most

of the smells defined in the literature. In fact, many of them describe method-

level behavior (see, for instance, Feature Envy or Divergent Change)2. In order to

extract fine-grained changes, the Change history extractor includes a code analyzer

component that is developed in the context of the MARKOS European project3.

We use this component to capture changes at method level granularity. In par-

ticular, for each pair of subsequent source code snapshots extracted from the ver-

sioning system, the code analyzer (i) checks out the two snapshots in two sep-

arate folders and (ii) compares the source code of these two snapshots, produc-

ing the set of changes performed between them. The set of changes includes: (i)

added/removed/moved/renamed classes, (ii) added/removed class attributes,

(iii) added/removed/moved/renamed methods, (iv) changes applied to all the

method signatures (i.e., visibility change, return type change, parameter added,

parameter removed, parameter type change, method rename), and (v) changes

applied to all the method bodies.

The code analyzer parses source code by relying on the srcML toolkit [188]. To

distinguish cases where a method/class was removed and a new one added from

cases when a method/class was moved (and possibly its source code changed), the

MARKOS code analyzer uses heuristics that map methods/classes with different

names if their source code is similar based on a metric fingerprint similar to the one

used in metric-based clone detection [189]. For example, each method is associ-

ated with a twelve digits fingerprint containing the following information: LOCs,

2Note that some versioning systems allow to obtain line diffs of the changes performed in a

commit. However, the mapping between the changed lines and the impacted code components

(e.g., which methods are impacted by the change) is not provided.
3www.markosproject.eu verified on September 2014
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number of statements, number of if statements, number of while statements, num-

ber of case statements, number of return statements, number of specifiers, number

of parameters, number of thrown exceptions, number of declared local variables,

number of method invocations, and number of used class attributes (i.e., instance

variables). The accuracy of such heuristics has been evaluated at two different

levels of granularity:

• Method level, by manually checking 100 methods reported as moved by the

MARKOS code analyzer. Results showed that 89 of them were actually

moved methods.

• Class level, by manually checking 100 classes reported as moved by the code

analyzer. Results showed that 98 of them were actually moved classes.

Typical cases of false positives were those in which a method/class was removed

from a class/package and a very similar one—in terms of fingerprint—was added

to another class/package.

7.2.2 Code Smells Detection

The set of fine-grained changes computed by the Change history extractor is pro-

vided as an input to the Code Smell detector, that identifies the list of code compo-

nents (if any) affected by specific smells. While the exploited underlying informa-

tion is the same for all target smells (i.e., the change history information), HIST

uses custom detection heuristics for each smell. Note that, since HIST relies on

the analysis of change history information, it is possible that a class/method that

behaved as affected by a smell in the past does not exist in the current version of

the system, e.g., because it has been refactored by the developers. Thus, once HIST

identifies a component that is affected by a smell, HIST checks the presence of this

component in the current version of the system under analysis before presenting

the results to the user. If the component does not exist anymore, HIST removes it

from the list of components affected by smells.
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In the following we describe the heuristics we devised for detecting the differ-

ent kinds of smells described above, while the process for calibrating the heuristic

parameters is described in Section 7.3.1.

Divergent Change Detection

Given the definition of this smell provided by Fowler [8], our conjecture is that

classes affected by Divergent Change present different sets of methods each one contain-

ing methods changing together but independently from methods in the other sets. The

Code Smell detector mines association rules [190] for detecting subsets of methods

in the same class that often change together. Association rule discovery is an unsu-

pervised learning technique used for local pattern detection highlighting attribute

value conditions that occur together in a given dataset [190]. In HIST, the dataset

is composed of a sequence of change sets—e.g., methods—that have been com-

mitted (changed) together in a version control repository [191]. An association

rule, Mleft ) Mright, between two disjoint method sets implies that, if a change

occurs in each mi 2 Mleft, then another change should happen in each mj 2 Mright

within the same change set. The strength of an association rule is determined by

its support and confidence [190]:

Support =
|Mleft [Mright|

T
(7.1)

Confidence =
|Mleft [Mright|

|Mleft|
(7.2)

where T is the total number of change sets extracted from the repository. In

this chapter, we perform association rule mining using a well-known algorithm,

namely Apriori [190]. Note that, minimum Support and Confidence to consider

an association rule as valid can be set in the Apriori algorithm. Once HIST de-

tects these change rules between methods of the same class, it identifies classes

affected by Divergent Change as those containing at least two sets of methods with

the following characteristics:
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1. The cardinality of the set is at least �;

2. All methods in the set change together, as detected by the association rules;

and

3. Each method in the set does not change with methods in other sets as de-

tected by the association rules.

Shotgun Surgery Detection

In order to define a detection strategy for this smell, we exploited the following

conjecture: a class affected by Shotgun Surgery contains at least one method changing

together with several other methods contained in other classes. Also in this case, the Code

Smell detector uses association rules for detecting methods—in this case methods

from different classes—often changing together. Hence, a class is identified as

affected by a Shotgun Surgery smell if it contains at least one method that changes

with methods present in more than � different classes.

Parallel Inheritance Detection

Two classes are affected by Parallel Inheritance smell if “every time you make a subclass

of one class, you also have to make a subclass of the other” [8]. Thus, the Code Smell

detector identifies pairs of classes for which the addition of a subclass for one class

implies the addition of a subclass for the other class using generated association

rules. These pairs of classes are candidates to be affected by the Parallel Inheritance

smell.

Blob Detection

A Blob is a class that centralizes most of the system’s behavior and has dependen-

cies towards data classes [61]. Thus, our conjecture is that despite the kind of change

developers have to perform in a software system, if a Blob class is present, it is very likely

that something will need to be changed in it. Given this conjecture, Blobs are iden-

tified as classes modified (in any way) in more than ↵% of commits involving at
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least another class. This last condition is used to better reflect the nature of Blob

classes that are expected to change despite the type of change being applied, i.e.,

the set of modified classes.

Feature Envy Detection

Our goal here is to identify methods placed in the wrong class or, in other words,

methods having an envied class which they should be moved into. Thus, our con-

jecture is that a method affected by feature envy changes more often with the envied class

than with the class it is actually in. Given this conjecture, HIST identifies methods

affected by this smell as those involved in commits with methods of another class

of the system �% more than in commits with methods of their class.

7.3 The Accuracy of HIST

The goal of the study is to evaluate HIST, with the purpose of analyzing its effective-

ness in detecting smells in software systems. The quality focus is on the detection

accuracy and completeness as compared to the approaches based on the analysis

of a single project snapshot, while the perspective is of researchers, who want to

evaluate the effectiveness of historical information in identifying smells for build-

ing better recommenders for developers.

7.3.1 Study Design

This section provides details about the design and planning of the study aimed at

assessing HIST’s effectiveness and comparing it with alternative approaches.

Context Selection

The context of the study consists of twenty software projects. Table 7.1 reports

the characteristics of the analyzed systems, namely the software history that we

investigated, and the size range (in terms of KLOC and # of classes). Among the

analyzed projects we have:
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Table 7.1: Characteristics of the software systems used in the study.

Project Period #Classes KLOC

Apache Ant Jan 2000-Jan 2013 44-1,224 8-220

Apache Tomcat Mar 2006-Jan 2013 828-1,548 254-350

jEdit Sep 2001-July 2010 279-544 85-175

Android API (framework-opt-telephony) Aug 2011-Jan 2013 218-225 73-78

Android API (frameworks-base) Oct 2008-Jan 2013 1,698-3,710 534-1,043

Android API (frameworks-support) Feb 2011-Nov 2012 199-256 58-61

Android API (sdk) Oct 2008-Jan 2013 132-315 14-82

Android API (tool-base) Nov 2012-Jan 2013 471-714 80-134

Apache Commons Lang Jul 2002-Oct 2013 30-242 14-165

Apache Cassandra Mar 2009-Oct 2013 313-1,008 115-935

Apache Commons Codec Apr 2004-Jul 2013 23-107 4-25

Apache Derby Aug 2008-Oct 2013 1,298-2,847 159-179

Eclipse Core Jun 2001-Sep 2013 824-1,232 120-174

Apache James Mime4j Jun 2005-Sep 2013 106-269 91-532

Google Guava Sep 2009-Oct 2013 65-457 4-35

Aardvark Nov 2010-Jan 2013 16-157 13-25

And Engine Mar 2010-Jun 2013 215-613 14-24

Apache Commons IO Jan 2002-Oct 2013 13-200 3-56

Apache Commons Logging Aug 2001-Oct 2013 5-65 1-54

Mongo DB Jan 2009-Oct 2013 13-27 10-25

• Nine projects coming from the Apache ecosystem4, namely Ant, Tomcat,

Cassandra, Derby, James Mime4j, and a set of commons libraries such as

Commons Lang, Commons Codec, Commons IO, and Commons Logging.

• Five projects belonging to the Android APIs5, namely sdk, tool-base, and

a set of Android frameworks such as opt-telephony, frameworks-base,

frameworks-support. Each of these projects is responsible for imple-

menting parts of the Android APIs.

• Six open source projects from elsewhere: jEdit6, Eclipse Core7, Google

4http://www.apache.org/ verified on September 2014
5https://android.googlesource.com/ verified on September 2014
6http://www.jedit.org/ verified on September 2014
7http://www.eclipse.org/eclipse/platform-core/ verified on September 2014

186

http://www.apache.org/
https://android.googlesource.com/
http://www.jedit.org/
http://www.eclipse.org/eclipse/platform-core/


Chapter 7. Mining Version Histories for Detecting Code Smells

Guava8, Aardvark9, And Engine10, and Mongo DB11.

Note that our choice of the subject systems is not random, but guided by spe-

cific requirements of our underlying infrastructure. Specifically, the selected sys-

tems:

1. are written in Java, since the MARKOS code analyzer is currently able to

parse just systems written in this programming language;

2. have their entire development histories tracked in a versioning system;

3. have different development history lengths (we start with a minimum of

three months for tool-base up to 13 years for Apache Ant); and

4. have different sizes (we go from a minimum of 25 KLOCs for Commons

Codec up to 1,043 KLOCs for framework-base).

Research Questions

Our study aims at addressing the following two research questions:

• RQ1: How does HIST perform in detecting code smells? This research question

aims at quantifying the accuracy of HIST in detecting instances of the five

smells described in Section 7.2, namely Divergent Change, Shotgun Surgery,

Parallel Inheritance, Blob, and Feature Envy.

• RQ2: How does HIST compare to the smell detection techniques based on the anal-

ysis of a single project snapshot? This research question aims at comparing

the accuracy of HIST in detecting the five smells above with the accuracy

achieved by applying a more conventional approach based on the analysis

of a single project snapshot. The results of this comparison will provide in-

sights into the usefulness of historical information while detecting smells.

8https://code.google.com/p/guava-libraries/ verified on September 2014
9http://karmatics.com/aardvark/ verified on September 2014

10http://www.andengine.org/ verified on September 2014
11http://www.mongodb.org/ verified on September 2014
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Table 7.2: Snapshots considered for the smell detection.

Project git snapshot Date Classes KLOC

Apache Ant da641025 Jun 2006 846 173

Apache Tomcat 398ca7ee Jun 2010 1,284 336

jEdit feb608el Aug 2005 316 101

Android API (framework-opt-telephony) b3a03455 Feb 2012 223 75

Android API (frameworks-base) b4ff35df Nov 2011 2,766 770

Android API (frameworks-support) 0f6f72e1 Jun 2012 246 59

Android API (sdk) 6feca9ac Nov 2011 268 54

Android API (tool-base) cfebaa9b Dec 2012 532 119

Apache Commons Lang 4af8bf41 Jul 2009 233 76

Apache Cassandra 4f9e551 Sep 2011 826 117

Apache Commons Codec c6c8ae7a Jul 2007 103 23

Apache Derby 562a9252 Jun 2006 1,746 166

Eclipse Core 0eb04df7 Dec 2004 1,190 162

Apache James Mime4j f4ad2176 Mar 2009 250 280

Google Guava e8959ed0 Aug 2012 153 16

Aardvark ff98d508 Jun 2012 103 25

And Engine f25236e4 Oct 2011 596 20

Apache Commons IO c8cb451c Oct 2010 108 27

Apache Commons Logging d821ed3e May 2005 61 23

Mongo DB b67c0c43 Oct 2011 22 25

Study Procedure, Data Analysis and Metrics

In order to answer RQ1 we simulated the use of HIST in a realistic usage scenario.

In particular, we split the history of the twenty subject systems into two equal

parts, and ran our tool on all snapshots of the first part. For instance, given the

history of Apache Ant going from January 2000 to January 2013, we selected a

system snapshot s from June 2006. Then, HIST analyzed all snapshots from Jan-

uary 2000 to June 2006 in order to detect smell instances on the selected snapshot

s. This was done aiming at simulating a developer performing smell detection on

an evolving software system. On the one hand, considering some early snapshot

in the project history, there could have been the risk of performing smell detection

on a software system still exhibiting some ongoing, unstable design decisions. On

the other hand, by considering snapshots occurring later in the project history (e.g.,

the last available release) there could have been the risk of simulating some unre-

alistic scenario, i.e., in which developers put effort in improving the design of a
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software system when its development is almost absent. Table 7.2 reports the list

of selected snapshots, together with their characteristics.

To evaluate the detection accuracy of HIST, we need an oracle reporting the

instances of smells in the considered systems’ snapshots. Unfortunately, there are

no annotated sets of such smells available in literature. Thus, we had to man-

ually build our own oracle. A Master’s student from the University of Salerno

manually identified instances of the five considered smells in each of the systems’

snapshots. Starting from the definition of the five smells reported in literature,

the student manually analyzed the source code of each snapshot, looking for in-

stances of those smells. Clearly, for smells having an intrinsic historical nature,

he analyzed the changes performed by developers on different code components.

This process took four weeks of work. Then, a second Master’s student (still from

the University of Salerno) validated the produced oracle, to verify that all affected

code components identified by the first student were correct. Only six of the smells

identified by the first student were classified as false positives by the second stu-

dent. After a discussion performed between the two students, two of these six

smells were classified as false positives (and thus removed from the oracle). Note

that, while this does not ensure that the defined oracle is complete (i.e., it includes

all affected components in the systems), it increases our degree of confidence on

the correctness of the identified smell instances. To avoid any bias in the experi-

ment, students were not aware of the experimental goals and of specific algorithms

used by HIST for identifying smells. The number of code smell instances in our

oracle is shown in Table 7.3 for each of the twenty subject systems. As we can see

Parallel Inheritance, Blob, and Feature Envy code smells are quite diffused, present-

ing more than 50 instances each. A high number (24) of Divergent Change instances

is also present in our oracle, while the Shotgun Surgery smell seems to be poorly

diffused across open source projects, with just six instances identified.

Once we defined the oracle and obtained the set of smells detected by HIST

on each of the systems’ snapshots, we evaluated its detection accuracy by using

two widely-adopted Information Retrieval (IR) metrics, namely precision and re-

call [55]:
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Table 7.3: Code smell instances in the manually defined oracle.

Project
Divergent Shotgun Parallel

Blob
Feature

Change Surgery Inheritance Envy

Apache Ant 0 0 7 8 8

Apache Tomcat 5 1 9 5 3

jEdit 4 1 3 5 10

Android API (framework-opt-telephony) 0 0 0 13 0

Android API (frameworks-base) 3 1 3 18 17

Android API (frameworks-support) 1 1 0 5 0

Android API (sdk) 1 0 9 10 3

Android API (tool-base) 0 0 0 0 0

Apache Commons Lang 1 0 6 3 1

Apache Cassandra 3 0 3 2 28

Apache Commons Codec 0 0 0 1 0

Apache Derby 0 0 0 9 0

Eclipse Core 1 1 8 4 3

Apache James Mime4j 1 0 0 0 9

Google Guava 0 0 0 1 2

Aardvark 0 1 0 1 0

And Engine 0 0 0 0 1

Apache Commons IO 1 0 1 2 1

Apache Commons Logging 2 0 2 2 0

Mongo DB 1 0 0 3 0

Overall 24 6 51 92 86

precision =

|correct \ detected|
|detected| recall =

|correct \ detected|
|correct| (7.3)

where correct and detected represent the set of true positive smells (those manually

identified) and the set of smells detected by HIST, respectively. As an aggregate

indicator of precision and recall, we report the F-measure, defined as the harmonic

mean of precision and recall:

F -measure = 2 ⇤ precision ⇤ recall
precision+ recall

% (7.4)

Turning to RQ2, we executed smell detection techniques based on the analysis of a

single snapshot on the same systems’ snapshots previously selected when answer-

ing RQ1. To the best of our knowledge, there is not a single approach detecting
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all the smells that we considered in our study. For this reason, depending on the

specific smell being detected, we considered different competitive techniques to

compare our approach against. As for the Blob, we compared HIST with DECOR,

the detection technique proposed by Moha et al. [20]. Specifically, we implemented

the detection rules used by DECOR for the detection of Blob. Such rules are avail-

able online12. For the Feature Envy we considered JDeodorant as a competitive

technique [25], which is a publicly available Eclipse plug-in13. The approach im-

plemented in JDeodorant analyzes all methods for a given system, and forms a

set of candidate target classes where a method should be moved into. This set

is obtained by examining the entities (i.e., attributes and methods) that a method

accesses from the other classes.

As for Divergent Change and Shotgun Surgery, we compared HIST against our

implementation of the approach proposed by Rao and Raddy [79] that is purely

based on structural information. This technique starts by building an n⇥n matrix

(where n is the number of classes in the system under analysis), named Design

Change Propagation Probability (DCPP). A generic entry Aij in DCPP represents

the probability that a change in the class i triggers a change to the class j. Such

a probability is given by the cdegree [80], i.e., an indicator of the number of de-

pendencies that class i has with a class j (note that cdegree is not symmetric, i.e.,

Aij 6= Aji). Once the DCPP matrix is built, a Divergent Change instance is detected if

a column in the matrix (i.e., a class) has several (more than �) non-zero values (i.e.,

the class has dependencies with several classes). The conjecture is that if a class

depends on several other classes, it is likely that it implements different responsi-

bilities divergently changing during time. Regarding the detection of the Shotgun

Surgery, instances of such a smell are identified when a row in the matrix (i.e., a

class) contains several (more than ⌘) non-zero values (i.e., several classes have de-

pendencies with the class). The conjecture is that changes to this class will trigger

changes in classes depending on it. From now on we will refer to this technique as

DCPP.

12http://www.ptidej.net/research/designsmells/grammar/Blob.txt
13http://www.jdeodorant.com/ verified on September 2014
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Concerning the Parallel Inheritance smell, we are not aware of publicly available

techniques in the literature to detect it. Thus, in order to have a meaningful base-

line for HIST, we implemented a detection algorithm based on the analysis of a sin-

gle project snapshot. Note that this analysis was not intended to provide evidence

that HIST is the best method for detecting Parallel Inheritance instances. Instead,

the goal was to conduct an investigation into the actual effectiveness of historical

information while detecting smells as compared to information extracted from a

single project snapshot.

We detect classes affected by Parallel Inheritance as pairs of classes having (i)

both a superclass and/or a subclass (i.e., both belonging to a class hierarchy), and

(ii) the same prefix in the class name. This detection algorithm (from now on

coined as PICA) directly comes from the Fowler’s definition of Parallel Inheritance:

“You can recognize this smell because the prefixes of the class names in one hierarchy are

the same as the prefixes in another hierarchy” [8].

To compare the performances of HIST against the competitive techniques de-

scribed above, we used recall, precision, and F-measure. Moreover, to analyze

the complementarity of static code information and historical information when

performing smell detection, we computed the following overlap metrics:

correctHIST\SS =

|correctHIST \ correctSS|
|correctHIST [ correctSS|

% (7.5)

correctHIST\SS =

|correctHIST \ correctSS|
|correctHIST [ correctSS|

% (7.6)

correctSS\HIST =

|correctSS \ correctHIST |
|correctHIST [ correctSS|

% (7.7)

where correctHIST and correctSS represent the sets of correct smells detected by

HIST and the competitive technique, respectively.

correctHIST\SS measures the overlap between the set of true smells detected

by both techniques, and correctHIST\SS (correctSS\HIST ) measures the true smells

detected by HIST (SS) only and missed by SS (HIST). The latter metric provides
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an indication on how a smell detection strategy contributes to enriching the set of

correct smells identified by another method.

Calibrating HIST and the Competitive Approaches

While for JDeodorant and DECOR parameter tuning has already been empirically

investigated by their respective authors, we needed to calibrate parameters for

HIST and DCPP as well. Indeed, in the work presenting the DCPP approach no

best values for its parameters were recommended [79]. We performed this cal-

ibration on a software system which was not used in our experimentation, i.e.,

Apache Xerces14. Also on this system, we asked two Master’s students to man-

ually identify instances of the five considered smells in order to build an oracle.

The procedure adopted by the students was exactly the same described before and

used to build the study oracle. Then, we evaluated the F-measure value obtained

by the detection approaches using different settings.
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Figure 7.2: Parameters calibration for HIST (Blob) ↵ (a), HIST (Feature Envy) � (b),

HIST (Divergent Change) � (c), and HIST (Shotgun Surgery) � (d).

Results of the calibration are reported in Figure 7.2 for the HIST parameters ↵,

�, �, and �, and in Figure 7.3 for the DCPP � and the DCPP ⌘ parameters. As for

the confidence and support, the calibration was not different from what was done

in other work using association rule discovery [191, 192, 193, 194].

In particular, we tried all combinations of confidence and support obtained by

varying the confidence between 0.60 and 0.90 by steps of 0.05, and the support

14http://xerces.apache.org/ verified on September 2014
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Figure 7.3: Parameters’ calibration for DCPP-Divergent Change � (a), and DCPP-

Shotgun Surgery ⌘ (b).

between 0.004 and 0.04 by steps of 0.004, and searching for the one ensuring the

best F-measure value on Xerces (that is the one that we used in answering the

research questions).

Replication Package

The raw data and working data sets used in our study are publicly available in a

replication package [195] where we provide: (i) links to the GIT repositories from

which we extracted historical information; (ii) complete information on the change

history in all the subject systems; (iii) the oracle used for each system; and (iv) the

list of smells identified by HIST and by the competitive approaches.

7.3.2 Analysis of the Results

This section reports the results aimed at answering the two research questions

formulated in Section 7.3.1. Note that to avoid redundancies, we report the results

for both research questions together, discussing each smell separately.

Tables 7.4, 7.6, 7.7, 7.8, and 7.9 report the results—in terms of recall, preci-
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Table 7.4: Divergent Change - HIST accuracy as compared to the single snapshot

technique.

Project

#Smell HIST Single Snapshot technique

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure

Apache Ant 0 0 0 0 - - - 1 0 1 - - -

Apache Tomcat 5 6 3 3 50% 60% 55% 0 0 0 N/A N/A N/A

jEdit 4 3 3 0 100% 75% 86% 1 1 0 100% 25% 40%

Android API (framework-opt-telephony) 0 0 0 0 - - - 0 0 0 - - -

Android API (frameworks-base) 3 3 3 0 100% 100% 100% 0 0 0 N/A N/A N/A

Android API (frameworks-support) 1 1 1 0 100% 100% 100% 2 0 2 0% 0% 0%

Android API (sdk) 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A

Android API (tool-base) 0 1 0 1 - - - 0 0 0 - - -

Apache Commons Lang 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A

Apache Cassandra 3 2 2 0 100% 67% 80% 7 1 6 14% 34% 20%

Apache Commons Codec 0 0 0 0 - - - 0 0 0 - - -

Apache Derby 0 0 0 0 - - - 0 0 0 - - -

Eclipse Core 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A

Apache James Mime4j 1 1 1 0 100% 100% 100% 1 1 0 100% 100% 100%

Google Guava 0 0 0 0 - - - 0 0 0 - - -

Aardvark 0 1 0 1 - - - 0 0 0 - - -

And Engine 0 0 0 0 - - - 14 0 14 - - -

Apache Commons IO 1 1 1 0 100% 100% 100% 3 0 3 0% 0% 0%

Apache Commons Logging 2 2 2 0 100% 100% 100% 0 0 0 N/A N/A N/A

Mongo DB 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A

Overall 24 25 20 5 80% 83% 82% 29 3 26 10% 13% 11%

sion, and F-measure—achieved by HIST and approaches based on the analysis of

a single snapshot on the twenty subject systems. In addition, each table also re-

ports (i) the number of smell instances present in each system (column “#Smell

Instances”), (ii) the number of smell instances identified by each approach (col-

umn “Identified”), (iii) the number of true positive instances identified by each

approach (column “TP”), and (iv) the number of false positive instances identified

by each approach (column “FP”). Note that each table shows the results for one of

the five smells considered in our study and in particular: Table 7.4 for Divergent

Change, Table 7.6 for Shotgun Surgery, Table 7.7 for Parallel Inheritance, Table 7.8 for

Blob, and Table 7.9 for Feature Envy.

As explained in Section 7.3.1 for Divergent Change and Shotgun Surgery we com-

pared HIST against DCCP approach proposed by Rao and Raddy [79], while for

Parallel Inheritance we used an alternative approach that we developed (PICA). Fi-

nally, for Blob and Feature Envy we used DECOR rules [20] and the JDeodorant tool

[25], respectively.

195



7.3. The Accuracy of HIST

When no instances of a particular smell were present in the oracle (i.e., zero in

the column “#Smell Instances”), it was not possible to compute the recall (that is,

division by zero), while the precision would be zero if at least one false positive

is detected (independently of the number of false positives). In these cases a “-”

is indicated in the corresponding project row. Similarly, when an approach did

not retrieve any instances of a particular smell, it was not possible to compute

precision, while recall would be zero if at least one false positive is retrieved. In

this case a “N/A” is included in the project row. However, to have an accurate

estimation of the performances of the experimented techniques, we also report in

each table the results achieved by considering all systems as a single dataset (rows

“Overall”). In such a dataset, it never happens that recall or precision cannot be

computed for the reasons described above. Thus, all true positives and all false

positives identified by each technique are taken into account in the computation

of the overall recall, precision, and F-measure.

Finally, Table 7.5 reports the overlap and differences between HIST and the

techniques based on code analysis of a single snapshot: column “HIST \ SS Tech.”

reports the number (#) and percentage (%) of smells correctly identified by both

HIST and the competitive technique; column “HIST \ SS Tech.” reports the num-

ber and percentage of smells correctly identified by HIST but not by the compet-

itive technique; column “SS Tech. \ HIST” reports the number and percentage of

smells correctly identified by the competitive technique but not by HIST. In the

following, we discuss the results for each kind of smell.

Divergent Change

We identified 24 instances of Divergent Change in the twenty systems (see Table

7.4). The results clearly indicate that the use of historical information allows to

outperform DCCP (i.e., the approach based on the analysis of a single snapshot).

Specifically, the F-measure achieved by HIST on the overall dataset is 82% (83%

of recall and 80% of precision) against 10% (13% of recall and 11% of precision)

achieved by DCCP. This is an expected result, since the Divergent Change is by

definition a “historical smell” (see Section 7.2), and thus we expected difficulties
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Figure 7.4: One of the identified Divergent Change instances: the class ViewPager

from Android frameworks-support.

in capturing this kind of smell by just relying on the analysis of a single system’s

snapshot.

One of the Divergent Change instances captured by HIST is depicted in Figure

7.4 and related to the ViewPager class from the Android frameworks-support

project. ViewPager allows users of Android apps to flip left and right through

pages of data. In this class, HIST identified three sets of methods divergently

changing during the project’s history (see Section 7.2.2 for details on how these

sets were identified). The three sets are highlighted in Figure 7.4 by using dif-

ferent shades of gray. Starting from the top of the Figure 7.4, the first set groups

together methods somewhat related to the management of the items to be dis-

played in the View (e.g., menu, buttons, etc.). The middle set gathers methods

allowing to manage the View layout (i.e., setting margins, page offsets, etc.), while

the set at the bottom of Figure 7.6 is mainly related to the View configuration (e.g.,

init the page viewer, define the change listeners, etc.). Thus, the three identified

sets of methods, not only change independently one from the other, but also seem
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Table 7.5: Overlap between HIST and Single Snapshot (SS) techniques. For Blob

the SS Tech. is DECOR, for Feature Envy it is JDeodorant.

Code Smell
HIST\SS Tech. HIST\SS Tech. SS Tech.\HIST

# % # % # %

Divergent Change 1 4% 19 87% 2 9%

Shotgun Surgery 0 0% 6 100% 0 0%

Parallel Inheritance 20 50% 15 38% 5 12%

Blob 13 16% 40 51% 27 33%

Feature Envy 44 54% 22 27% 17 19%

to represent quite independent responsibilities implemented in the ViewPager

class. Of course, no speculations can be made on the need for refactoring of this

class, since developers having high experience on the system are needed to evalu-

ate both pros and cons.

Going back to the quantitative results, DCCP was able to detect only three

correct occurrences of Divergent Change and one of them was also captured by

HIST. The instances missed by HIST (and identified by DCCP) affect the RE class of

jEdit and the CassandraServer class of Apache Cassandra. Both of these

classes do not have enough change history data about divergent changes to be

captured by HIST. This clearly highlights the main limitation of HIST that requires

sufficient amount of historical information to infer useful association rules.

Given these observations, the overlap between the smells detected by HIST

and DCCP results reported in Table 7.5 is quite expected: among the sets of smells

correctly detected by two techniques, there is just a 4% overlap, HIST is the only

one retrieving 87% of the smells, while DCCP is the one detecting only two smells

described above and missed by HIST (9%). Thus, the complementarity between

HIST and DCCP is rather low.

Shotgun Surgery

Shotgun Surgery is the smell with the lowest number of instances in the subject sys-

tems, i.e., with only six systems affected for a total of six instances (one per system).
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Table 7.6: Shotgun Surgery - HIST accuracy compared to the single snapshot tech-

niques.

Project

#Smell HIST Single snapshot echnique

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure

ArgoUML 0 0 0 0 - - - 4 0 4 - - -

Apache Ant 1 1 1 0 100% 100% 100% 13 0 13 0% 0% 0%

jEdit 1 1 1 0 100% 100% 100% 3 0 3 0% 0% 0%

Android API (framework-opt-telephony) 0 1 0 1 - - - 3 0 3 - - -

Android API (frameworks-base) 1 1 1 0 100% 100% 100% 1 0 1 0% 0% 0%

Android API (frameworks-support) 1 1 1 0 100% 100% 100% 2 0 2 0% 0% 0%

Android API (sdk) 0 0 0 0 - - - 0 0 0 - - -

Android API (tool-base) 0 0 0 0 - - - 0 0 0 - - -

Apache Commons Lang 0 0 0 0 - - - 0 0 0 - - -

Apache Cassandra 0 0 0 0 - - - 0 0 0 - - -

Apache Commons Codec 0 0 0 0 - - - 0 0 0 - - -

Apache Derby 0 0 0 0 - - - 0 0 0 - - -

Eclipse Core 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A

Apache James Mime4j 0 0 0 0 - - - 0 0 0 - - -

Google Guava 0 0 0 0 - - - 0 0 0 - - -

Aardvark 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A

And Engine 0 0 0 0 - - - 0 0 0 - - -

Apache Commons IO 0 0 0 0 - - - 0 0 0 - - -

Apache Commons Logging 0 0 0 0 - - - 0 0 0 - - -

Mongo DB 0 0 0 0 - - - 0 0 0 - - -

Overall 6 7 6 1 86% 100% 92% 26 0 26 0% 0% 0%

HIST was able to detect all the instances of this smell (100% recall) with 86% pre-

cision, outperforming DCCP (i.e., the competitive approach). Specifically, DCCP

was not able to detect any of the six instances of this smell present in the sub-

ject systems. Thus, no meaningful observations can be made in terms of overlap

metrics. This result highlights the fact that it is quite difficult to identify character-

istics of such a smell by solely analysing a single system’s snapshot, as the smell is

intrinsically defined in terms of a change triggering many other changes [8].

It is also worthwhile to discuss an example of Shotgun Surgery we identified

in Apache Tomcat and represented by the method isAsync of the class named

AsyncStateMachine. HIST identified association rules between this method

and 48 methods in the system, belonging to 31 different classes. This means that,

whenever the isAsync method is modified, also these 48 methods, generally,

undergo a change. Figure 7.5 shows all 31 classes involved: each arrow going

from the isAsync method to one of these 31 classes is labeled with the number

of times isAsync co-changed with methods of that class in the analyzed time pe-
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Figure 7.5: One of the identified Shotgun Surgery instances: the

AsyncStateMachine.isAsync method from Apache Tomcat.

riod. Note that the total number of changes performed in the analyzed time period

to isAsync is 110. For instance, isAsync co-changed 104 (95%) times with two

methods contained in the Poller class. What is also very surprising about this

instance of Shotgun Surgery is that it triggers changes in over 19 different packages

of the software system. This clearly highlights the fact that such smell could be

very detrimental in software evolution and maintenance context.

As for the only false positive instance identified by HIST, it is the method

dispose of the class AsyncStateMachine contained in the Android library

framework-opt-telephony (see Table 7.6). HIST identified association rules

between this method and three other methods in the system: the method dispose

of the class CdmaDataConnectionTracker, the method handleSendComplete
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Table 7.7: Parallel Inheritance - HIST accuracy as compared to the single snapshot

techniques.

Project

#Smell HIST Single snapshot technique

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure

Apache Ant 7 8 5 3 63% 71% 67% 52 4 48 8% 57% 14%

Apache Tomcat 9 10 6 4 60% 67% 63% 61 4 57 7% 44% 12%

jEdit 3 0 0 0 N/A N/A N/A 15 3 12 20% 100% 33%

Android API (framework-opt-telephony) 0 0 0 0 - - - 9 0 9 - - -

Android API (frameworks-base) 3 1 0 1 0% 0% 0% 111 0 111 0% 0% 0%

Android API (frameworks-support) 0 0 0 0 - - - 9 0 9 - - -

Android API (sdk) 9 12 8 4 67% 89% 76% 59 3 56 5% 33% 12%

Android API (tool-base) 0 0 0 0 - - - 0 0 0 - - -

Apache Commons Lang 6 6 6 0 100% 100% 100% 6 6 0 100% 100% 100%

Apache Cassandra 3 1 1 0 100% 34% 50% 35 1 34 3% 34% 5%

Apache Commons Codec 0 0 0 0 - - - 3 0 3 - - -

Apache Derby 0 0 0 0 - - - 53 0 53 - - -

Eclipse Core 8 8 7 1 88% 88% 88% 31 2 29 6% 25% 10%

Apache James Mime4j 0 0 0 0 - - - 10 0 10 - - -

Google Guava 0 0 0 0 - - - 0 0 0 - - -

Aardvark 0 0 0 0 - - - 0 0 0 - - -

And Engine 0 0 0 0 - - - 60 0 60 - - -

Apache Commons IO 1 1 1 0 100% 100% 100% 8 1 7 13% 100% 22%

Apache Commons Logging 2 1 1 0 100% 50% 67% 3 1 2 34% 50% 40%

Mongo DB 0 0 0 0 - - - 0 0 0 - - -

Overall 51 48 35 13 73% 69% 71% 525 25 500 5% 49% 9%

of the class SMSDispatcher, and the method dump of the class GsmCallTracker.

However, this behavior was not considered as “smelly” by the students building

the oracle because: (i) differently from what discussed for the isAsync method,

the triggered changes in this case are spread just across three classes, and (ii) even

if the four involved methods tend to change together, they are correctly placed into

different classes splitting well the system’s responsibilities. For instance, while the

two dispose methods are both in charge of cleaning up a data connection, the

two protocols they manage are different (i.e., GSM vs CDMA). Thus, even if they

co-change during time, there is no apparent reason for placing them in the same

class with the only goal of isolating the change (poorly spread in this case). Indeed,

as a side effect, this refactoring operation could create a class managing heteroge-

neous responsibilities (i.e., a Blob class).
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Figure 7.6: CompletitionOnQualifiedNameReference and

SelectionOnQualifiedNameReference from Eclipse JDT, identified

as Parallel Inheritance.

Parallel Inheritance

Among the 51 instances of the Parallel Inheritance smell, HIST was able to correctly

identify 35 of them (recall 69%) with a price to pay of 13 false positives, resulting

in a precision of 73%. By using the competitive technique (i.e., PICA) we were able

to retrieve 25 correct instances of the smell (recall of 49%) while also retrieving 473

false positives (precision of 5%).

One of the Parallel Inheritance instances detected by HIST and missed by the

alternative approach PICA is depicted in Figure 7.6. The example refers to two

classes of the Eclipse JDT, i.e., CompletitionOnQualifiedNameReference

and the class named SelectionOnQualifiedNameReference. As shown in

Figure 7.6, these two classes have been committed together on 27 June 2008 in
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the same package and since then, the hierarchies having them as top superclasses

evolved in parallel. Indeed, the first subclass (QualifiedNameReference) has

been added to both superclasses on 3 September 2008 followed by the second

subclass (NameReference) on 25 September 2008. Note that while the name of

the subclasses added to the two superclasses is the same, we are talking about

two different subclasses. Indeed, as show in Figure 7.6, these subclasses are from

different packages. For instance, the NameReference class, which is a subclass

of the class CompletitionOnQualifiedNameReference, is from the package

named internal.codeassist, while the corresponding subclass of the class

SelectionOnQualifiedNameReference is from internal.compiler.

Looking at the overlap metrics reported in Table 7.5, we can see an overlap

of 50% among the set of smells correctly identified by the two techniques, while

38% of the correct instances are retrieved only by HIST and the remaining 12% are

identified only by PICA. For example, an instance of Parallel Inheritance detected

by PICA and missed by HIST is the one affecting Broken2OperationEnum and

Broken5OperationEnum belonging to Apache Commons Lang. In this case,

while the two hierarchies co-evolved synchronously, the (too high) thresholds

used for the support and confidence of the association rule mining algorithm used

in HIST did not allow capturing this specific instance (and thus, to identify the

smell). Obviously, this instance could have been detected when using lower val-

ues for support and confidence, however, this would naturally result in drastically

decreasing precision while somewhat increasing recall values.

Blob

As for detecting the Blobs, HIST was able to achieve a precision of 72% and a re-

call of 58% (F-measure=64%), while DECOR was able to achieve a precision of

54% and a recall of 43% (F-measure=48%). In more details, HIST achieved bet-

ter precision values on 13 systems (on average, +45%), DECOR on two systems

(on average, +45%), while on one system there was a tie. Thus, for most of the

systems containing Blob instances (13 out of 16) HIST requires less effort to de-

velopers looking for instances of Blobs due to the lower number of false positives
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Table 7.8: Blob - HIST accuracy as compared to DECOR.

Project

#Smell HIST DECOR

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure

Apache Ant 8 10 6 4 60% 75% 67% 10 3 7 30% 38% 33%

Apache Tomcat 5 1 1 0 100% 20% 33% 6 4 2 67% 80% 73%

jEdit 5 3 2 1 67% 40% 50% 5 3 2 60% 60% 60%

Android API (framework-opt-telephony) 13 10 10 0 100% 77% 87% 10 7 3 70% 54% 61%

Android API (frameworks-base) 18 13 9 4 70% 50% 58% 14 9 5 65% 50% 57%

Android API (frameworks-support) 5 7 5 2 71% 100% 83% 8 3 5 38% 60% 49%

Android API (sdk) 10 7 6 1 86% 60% 71% 7 2 5 29% 20% 24%

Android API (tool-base) 0 0 0 0 - - - 0 0 0 - - -

Apache Commons Lang 3 2 2 0 100% 67% 80% 0 0 0 N/A N/A N/A

Apache Cassandra 2 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A

Apache Commons Codec 1 2 1 1 50% 100% 67% 0 0 0 N/A N/A N/A

Apache Derby 9 0 0 0 N/A N/A N/A 7 4 3 57% 44% 50%

Eclipse Core 4 3 2 1 67% 50% 57% 4 2 2 50% 50% 50%

Apache James Mime4j 0 3 0 3 - - - 0 0 0 - - -

Google Guava 1 1 1 0 100% 100% 100% 0 0 0 N/A N/A N/A

Aardvark 1 1 1 0 100% 100% 100% 1 1 0 100% 100% 100%

And Engine 0 0 0 0 - - - 0 0 0 - - -

Apache Commons IO 2 3 2 1 67% 100% 80% 0 0 0 N/A N/A N/A

Apache Commons Logging 2 3 2 1 67% 100% 80% 2 2 0 100% 100% 100%

Mongo DB 3 5 3 2 60% 100% 75% 0 0 0 N/A N/A N/A

Overall 92 74 53 21 72% 58% 64% 74 40 34 54% 43% 48%

that will be inspected and discarded. Also, HIST ensured better recall on nine out

of the 16 systems containing at least one Blob class, and a tie has been reached on

five other systems. On the contrary, HIST outperformed by DECOR on Apache

Tomcat and jEdit (see Table 7.8). However, on the overall dataset, HIST was

able to correctly identify 53 of the 92 existing Blobs, against the 40 identified by

DECOR. Thus, as also indicated by the F-measure value computed over the whole

dataset, the overall performance of HIST is better than that one of DECOR (64%

against 48%). Noticeably, the two approaches seem to be highly complementary.

This is highlighted by the overlap results in Table 7.5. Among the sets of smells

correctly identified by the two techniques, there is an overlap of just 16%. Specif-

ically, HIST is able to detect 51% of smells that are ignored by DECOR, and the

latter retrieves 33% of correct smells that are not identified by HIST. Similarly to

the results for the Parallel Inheritance smell, this finding highlights the possibility of

building better detection techniques by combining single-snapshot code analysis

and change history information.

An example of Blob correctly identified by HIST and missed by DECOR is the
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Table 7.9: Feature Envy - HIST accuracy as compared to JDeodorant.

Project

#Smell HIST JDeodorant

Instances Identified TP FP Prec. Recall F-measure Identified TP FP Prec. Recall F-measure

Apache Ant 8 9 6 3 67% 75% 71% 13 2 11 15% 25% 19%

Apache Tomcat 3 1 1 0 100% 33% 50% 3 2 1 67% 67% 67%

jEdit 10 10 8 2 100% 100% 100% 3 3 0 100% 27% 43%

Android API (framework-opt-telephony) 0 0 0 0 - - - 0 0 0 - - -

Android API (frameworks-base) 17 24 15 9 63% 88% 73% 16 16 0 100% 94% 96%

Android API (frameworks-support) 0 0 0 0 - - - 0 0 0 - - -

Android API (sdk) 3 1 1 0 100% 33% 50% 0 0 0 N/A N/A N/A

Android API (tool-base) 0 0 0 0 - - - 0 0 0 - - -

Apache Commons Lang 1 2 1 1 50% 100% 67% 2 1 1 50% 100% 67%

Apache Cassandra 28 28 28 0 100% 100% 100% 28 28 0 100% 100% 100%

Apache Commons Codec 0 1 0 1 - - - 0 0 0 - - -

Apache Derby 0 0 0 0 - - - 0 0 0 - - -

Eclipse Core 3 5 3 2 60% 100% 75% 0 0 0 N/A N/A N/A

Apache James Mime4j 9 0 0 0 N/A N/A N/A 11 9 2 82% 100% 90%

Google Guava 2 2 2 0 100% 100% 100% 3 0 3 0% 0% 0%

Aardvark 0 0 0 0 - - - 0 0 0 - - -

And Engine 1 2 1 1 50% 100% 67% 0 0 0 N/A N/A N/A

Apache Commons IO 1 0 0 0 N/A N/A N/A 6 0 6 0% 0% 0%

Apache Commons Logging 0 0 0 0 - - - 8 0 8 - - -

Mongo DB 0 0 0 0 - - - 1 0 1 - - -

Overall 86 85 66 19 78% 77% 77% 94 61 33 65% 71% 68%

class ELParser from Apache Tomcat, that underwent changes in 178 out of the

1,976 commits occurred in the analyzed time period. ELParser is not retrieved by

DECOR because this class has a one-to-one relationship with data classes, while

a one-to-many relationship is required by the DECOR detection rule. Instead, a

Blob retrieved by DECOR and missed by HIST is the class StandardContext of

Apache Tomcat. While this class exhibits all the structural characteristics of a

Blob (thus allowing DECOR to detect it), it was not involved in any of the commits

(i.e., it was just added and never modified), hence making the detection impossible

for HIST.

Feature Envy

For the Feature Envy, we found instances of this smell in twelve out of the twenty

systems, for a total of 86 affected methods. HIST was able to identify 66 of them

(recall of 77%) against the 61 identified by JDeodorant (recall of 71%). Also, the

precision obtained by HIST is higher than the one achieved by JDeodorant (78%

against 65%). However, it is important to point out that JDeodorant is a refactoring
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tool and, as such, it identifies Feature Envy smells in software systems with the

sole purpose of suggesting move method refactoring opportunities. Thus, the tool

reports the presence of Feature Envy smells only if the move method refactoring is

possible, by checking some preconditions ensuring that a program’s behavior does

not change after applying the suggested refactoring operation [25]. An example of

considered preconditions is that the envied class does not contain a method having the

same signature as the moved method [25]. To perform a fair comparison (especially

in terms of recall), we filtered the Feature Envy instances retrieved by HIST by

using the same set of preconditions defined by JDeodorant [25]. This resulted in

the removal of three correct instances, as well as three false positives previously

retrieved by HIST, thus decreasing the recall from 78% to 74% and increasing the

precision from 78% to 80%. Still, HIST achieves better recall and precision values

as compared to JDeodorant.

It is interesting to observe that the overlap data reported in Table 7.5 high-

lights, also in this case, some complementarity between historical and single snap-

shot techniques, with 54% of correct smell instances identified by both techniques

(overlap), 27% identified only by HIST, and 19% only by JDeodorant.

An example of correct smell instance identified by HIST only is represented by

the method buildInputMethodListLocked (InputMethodManagerService

of the Android framework-base API). HIST identified the envied class in the

WindowManagerService class, since there are just three commits in which the

method is co-changed with methods of its class, against the 16 commits in which

it is co-changed together with methods belonging to the envied class. Instead,

JDeodorant was the only technique able to correctly identify the Feature Envy smell

present in Apache Ant, affecting the method isRebuildRequired of the class

WebsphereDeploymentTool. In this case, the envied class is Project, and

HIST was not able to identify it due to the limited number of observed co-changes.
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7.4 Threats to Validity

This section discusses the threats that could affect the validity of the evaluation of

HIST.

Construct Validity Threats to construct validity concern relationships between the-

ory and observation. This threat is generally due to imprecision in the measure-

ments performed in the study. In the context of the study, this is mainly due to

how the oracle was built (see Section 7.3.1). It is important to remark that to

mitigate the bias for such a task, the students who defined the oracle were not

aware of how HIST actually works. However, we cannot exclude that such manual

analysis could have potentially missed some smells, or else identified some false

positives. Another threat is due to the baselines—i.e., competitive approaches—

against which we compared HIST. While for Blob, Feature Envy, Divergent Change,

and Shotgun Surgery we compared HIST against existing techniques/tools, this

was not possible for the Parallel Inheritance smell, for which we had to define an

alternative static detection technique, that may or may not be the most suitable

ones among those based solely on structural information. Last, but not least, note

that although we implemented the DECOR rules (for the Blob detection) and the

approach by Rao et al. [79] (for Divergent Change and Shotgun Surgery) ourselves,

these are precisely defined by the authors.

Internal Validity Threats to internal validity concern factors that could have influ-

enced our results. In our context, a possible threat is represented by the calibration

of the HIST parameters, as well as of those of the alternative static approaches. We

performed the calibration of these parameters on one project (Apache Xerces)

not used in our study, by computing F-measures for different possible values of

such parameters (see Section 7.3.1).

External Validity Threats to external validity concern the generalization of the re-

sults. HIST only deals with five smells, while there might be many more left

uncovered [8, 61]. However, as explained in Section 7.2 we focused on (i) three

smells—Divergent Change, Shotgun Surgery, and Parallel Inheritance—that are clearly
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related to how source code elements evolve over time, rather than to their struc-

tural characteristics, and (ii) two smells—Blob and Feature Envy—whose character-

istics can be captured, at least in part, by observing source code changes over time.

However, we cannot exclude that there could be other smells that can be modeled

similarly.

We conducted it on twenty Java projects ensuring a good generalization of our

findings. We evaluated HIST and the competitive techniques on a specific sys-

tem’s snapshot selected by splitting the history of each object system in two equal

parts. Thus, the achieved results, and in particular our main finding in the con-

text of RQ2 (i.e., HIST was able to outperform single snapshot techniques and tools in

terms of recall, precision, and F-measure), might be influenced by the specific selected

snapshot. To mitigate such a threat, we replicated the study on ten snapshots rep-

resenting ten different releases of a single system, namely Apache Cassandra.

In particular, we considered Cassandra’s releases from 0.5 to 1.115. Note that we

just performed this analysis on a single system since it required the manual def-

inition of ten new oracles (i.e., one for each release) reporting the smell instances

present in each release. The oracle definition was performed by two Master’s stu-

dents (one of which was also involved in the definition of the 20 oracles exploited

in Study I) by adopting the same procedure described in Section 7.3.1. We run

HIST and the competitive techniques on the ten snapshots representing the ten re-

leases. Such snapshots have been identified by exploiting the Git tagging mech-

anism. The results achieved are high consistent when comparing HIST and the

competitive techniques. Figure 7.7 reports the boxplots of the F-Measure achieved

by HIST and by the competitive techniques on the ten Cassandra releases for

each of the five considered code smells. The achieved results can be summarized

as follows:

• Divergent Change: HIST achieves a higher F-Measure with respect to the com-

petitive technique (i.e., DCPP) in nine out of the ten considered releases (all

but Cassandra 0.5).
15We discarded the first four releases (i.e., from release 0.1 to release 0.4) since change-history

information for these four releases was not present in the versioning system.
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Figure 7.7: HIST vs single-snapshot competitive techniques (SS): F-Measure

achieved for each smell type on the ten Cassandra releases.

• Shotgun Surgery: HIST achieves a higher F-Measure with respect to the com-

petitive technique (i.e., DCPP) in nine out of the ten considered releases (all

but Cassandra 0.5). In Cassandra 0.5, a tie is reached, since no instances

of the Shotgun Surgery smell are present, and both detection techniques do

not retrieve any false positive.

• Parallel Inheritance: HIST achieves a higher F-Measure with respect to the

competitive technique (i.e., PICA) in all ten considered releases.

• Feature Envy: HIST achieves a higher F-Measure with respect to the com-

petitive technique (i.e., JDeodorant) in six out of the ten considered releases,

JDeodorant works better on two releases (the first two, Cassandra 0.5 and

0.6), while a tie is reached on the remaining two releases.

• Blob: HIST outperforms the competitive static technique (i.e., DECOR) in all

ten considered releases.

Interestingly, when the competitive techniques outperform HIST, the releases

involved are the 0.5 (in case of Divergent Change, Shotgun Surgery, and Feature Envy)
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and the 0.6 (in case of Feature Envy), representing the first two considered releases.

Thus, we can conclude that a shorter change history penalizes HIST as compared

to the competitive techniques. Such a limitation is typical of all approaches ex-

ploiting historical information to derive recurring patterns. Despite that, the over-

all results achieved on the release-snapshots confirm our main finding reported

while answering RQ2: HIST outperforms the competitive detection techniques

based on code analysis of a single system snapshot. The interested reader can find

detailed results about this analysis in our replication package [195].

Despite the effort we put in extending our evaluation to a high number of sys-

tems, it could be worthwhile to replicate the evaluation on other projects having

different evolution histories or different architectures (e.g., plugin-based architec-

ture). Also, the number of code smell instances present in our oracle was quite

low for the Shotgun Surgery smell (six instances). However, while this means eval-

uating the HIST performances on a small number of “true positive” instances, it is

worth noting that achieving high precision levels is even harder when the number

of correct instances in the oracle is low. Indeed, it is easier to identify a high num-

ber of false positives when the true positives in the oracle are very few. Despite

this, HIST achieved an average precision of 86% for such a smell.

7.5 Conclusion

We presented HIST, an approach aimed at detecting five different code bad smells

by exploiting co-changes extracted from versioning systems. We identified five

smells for which historical analysis can be helpful in the detection process: Diver-

gent Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy. For each

smell we defined a historical detector, using association rule discovery [190] or

analyzing the set of classes/methods co-changed with the suspected smell.

We assessed HIST’s recall and precision over a manually-built oracle of smells

identified in twenty Java open source projects, and compared it with alternative

smell detection approaches based on the analysis of a single project snapshot. The

results of our study indicate that HIST exhibits a precision between 72% and 86%,
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and a recall between 58% and 100%. For “intrinsically historical” smells—such as

Divergent Change, Shotgun Surgery, Parallel Inheritance—HIST clearly outperforms

approaches based on the analysis of a single snapshot, and generally performs

as well these latter (if not better) for Blob and Feature Envy smells. Besides the

better detection accuracy (in terms of precision and recall), HIST has a further

advantage: it highlights smells that are subject to frequent changes, and therefore

be possibly more problematic for the maintainer. In other words, a Blob detected

based on structural information might not be necessarily a problem if it rarely (or

never) changes, whereas it is worthwhile to bring to the attention of the developer

those changing very frequently, hence identified by HIST. Finally, it is important to

remark that in several cases the sets of smells detected by HIST and by techniques

analyzing a single system’s snapshot are quite complementary, suggesting that

better techniques can be built by combining them.

This result triggers our future research agenda, aimed at developing a hybrid

smell detection approach, obtained by combining static code analysis with analy-

sis of co-changes. Also, we are planning on investigating the applicability of HIST

to other types of smells. Finally, we would like to perform a deeper investiga-

tion into the characteristics causing a smell instance to represent/not represent a

problem for developers.
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Chapter 8

The Perception of Historical and

Structural Smells

8.1 Introduction

Bad code smells have been defined by Martin Fowler as symptoms of the pres-

ence of poor design or implementation choices applied by programmers during

the development of a software system [8]. Code smells attracted the attention of

several researchers since has been demonstrated how bad design solutions impact

the comprehensibility [18] and the maintenability of source code [16, 17, 19]. To

the lights of such findings, approaches and tools for the automatic identification

of the source code affected by code smells have been proposed. The vast major-

ity of them are based on structural analysis, namely they analyze the structural

characteristics of the source code (e.g., method calls) in order to extract relevant

informations that can be used as indicators of the presence of smells. For instance,

the technique proposed by Moha et al. [20] combines a set of CK metrics [64], such

as LCOM5 and the number of methods belonging to a class to estimate the smelli-

ness of a code element. On the other hand, structural techniques are not suitable

for the detection of several code smells presented in the catalogue by Fowler [8].

For this reason, alternative approaches have been devised [52, 53]. They use dif-

ferent types of sources of information, such as historical and textual analysis, to
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evaluate whether a class/method is smelly. Specifically, the historical approach

presented in Chapter 7, named HIST, identifies code smells relying on association

rule discovery and change frequency analysis. The textual-based technique that

is presented in Chapter 9, i.e., TACO, employs Information Retrieval tools to mea-

sure the conceptual dissimilarity between code elements of the source code.

Both the approaches using structural and other informations have good per-

formances. Moreover, they are demonstrated to be complementary each other, i.e.,

different approaches detect different code smell instances. However, despite the

good results achieved by such tools, it is important to point out that a smell detec-

tion technique is actually useful only if it identifies code design problems that are

recognized as such by software developers. In the context of this Chapter, we start

comparing the usefulness of different types of information from the developers’

perspective. In particular, we conducted a qualitative study–twelve developers

of four open source systems–aimed at investigating to what extent the smells de-

tected by HIST and by the single snapshot techniques compared in Chapter 7, i.e.,

JDeodorant [25, 67] (for the Feature Envy smell), the DECOR’s [20] detection rules

(for the Blob smell), and the approach by Rao et al. [79] (for Divergent Change and

Shotgun Surgery), reflect developers perception of poor design and implementation

choices. Results of this study highlight that over 75% of the smell instances iden-

tified by HIST are considered as design/implementation problems by developers,

that generally suggest refactoring actions to remove them.

8.2 Comparing the Developers’ Perception of Histori-

cal and Structural Code Smells

The goal of the empirical study is to investigate (i) to what extent developers are

able to perceive the code smells detected by HIST, i.e., the historical-based ap-

proach presented in Chapter 7, and (ii) whether code smells detected using histor-

ical or structural analysis are closer to the developers’ perception of design flaws.

Indeed, despite having achieved good results in terms of detection capability, it is
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also important to point out that a smell detection technique is actually useful only

if it identifies code design problems that are recognized as relevant problems by de-

velopers. For this reason, we carried out a qualitative study having as objects the

code smells detectable using both the types of information, summirized in Table

8.1 together with a short description.

In the study, we compared the code smell instances identified by HIST with

the ones detected using other structural-based tools, such as JDeodorant [25, 67]

for the Feature Envy smell, the DECOR’s [20] detection rules for the Blob smell, and

the approach by Rao et al. [79] for Divergent Change and Shotgun Surgery.

Table 8.1: Code smells detected by HIST

Code Smell Brief Description

Divergent Change A class is changed in different ways for different reasons

Shotgun Surgery
A change to the affected class (i.e., to one of its fields/methods) trig-

gers many little changes to several other classes

Parallel Inheritance
Every time you make a subclass of one class, you also have to make a

subclass of another

Blob
A class implementing several responsibilities, having a large number

of attributes, operations, and dependencies with data classes

Feature Envy
A method is more interested in another class than the one it is actually

in

The design of this second study was based on the results obtained in the study

on the accuracy presented in Chapter 7. Specifically:

• For purely historical smells (i.e., Divergent Change, Parallel Inheritance, and

Shotgun Surgery) we consider only instances that are identified by HIST. In-

deed, the results discussed in Section 7 demonstrate low complementarity

between HIST and the competitive techniques for detecting these smells,

with HIST playing the major role.

• For the structural smells (i.e., Blob and Feature Envy) we consider instances

identified (i) only by HIST (onlyHIST group), (ii) only by the competitive
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technique (onlyDECOR for Blobs and onlyJD for Feature Envy), and (iii) by

both techniques (both group). Indeed, the results achieved for these two

smells show that historical and structural information can both be good al-

ternatives for identifying smells. Thus, it is interesting to understand which

of the above mentioned groups contains smells that are recognized as actual

problems by developers.

8.2.1 Empirical Study Definition and Design

In the following, we report the design and planning of the study, by detailing the

context selection, the research questions, the data collection process, as well as the

analysis method.

Context Selection

A needed requirement for this study is, of course, software developers. In order to

recruit participants, we sent invitations to active developers of ten of the twenty

systems considered in our first study. In particular, we just considered systems

exhibiting instances of at least three of the code smells investigated in this chapter.

The active developers have been identified by analyzing the systems’ commit his-

tory1. In total, we invited 109 developers receiving responses from twelve of them:

two developers from Apache Ant, two from Eclipse, two from Android SDK,

and six from Android frameworks-base. Note that, even if the number of

respondents appears to be low (11% of response rate), we are inline with the sug-

gested minimum response rate for the survey studies defined below 20% [167].

Research Questions

The study aims at addressing the following two research questions:

• RQ1: Are the historical code smells identified by HIST recognized as design prob-

lems by developers? This research question focuses its attention on the Di-

vergent Change, Parallel Inheritance, and Shotgun Surgery smells. HIST is the
1We considered developers that performed at least one commit in the last two years.
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first technique able to effectively identify instances of these smells. Thus, it is

worthwhile to know if the instances of the smells it identifies really represent

design problems for developers.

• RQ2: Which detection technique aimed at identifying structural code smells better

reflects developers’ perception of design problems? This research question aims at

investigating how developers working on the four open-source systems per-

ceive the presence of structural code smells identified by different detection

techniques. In particular, we focus on smells identified by HIST only, by the

techniques based on code analysis of a single snapshot only, and by both.

We answer both research questions through a survey questionnaire that partic-

ipants filled-in online.

Survey Questionnaire Design

We designed a survey aimed at collecting developers’ opinions needed to answer

two of our research questions. Specifically, given the subject system Si, the follow-

ing process was performed:

1. Smell Instances Selection. The smell instances to consider in our study were

selected as follows:

• For each purely historical smell cj (i.e., Divergent Change, Parallel Inher-

itance, and Shotgun Surgery) having at least one instance in Si detected

by HIST, we randomly selected one instance or took the only one avail-

able. Note that we refer to the “instance” as code component(s) affected

by the smell. For example, it could be a single class affected by the Di-

vergent Change smell, as well as a pair of classes affected by the Parallel

Inheritance smell.

• For each structural smell cj (i.e., Blob and Feature Envy) having at least

one instance in Si we randomly selected (i) one instance detected only

by HIST (if any), (ii) one instance detected only by the DECOR or JDeodor-

ant (if any), and (iii) one instance detected by both techniques (if any).
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Table 8.2: Smell Instances Selected for each System.

System DC PI SS
Blob Feature Envy

onlyHIST onlyDECOR both onlyHIST onlyJD both

Apache Ant - 1 - 1 1 1 1 1 -

Eclipse 1 1 1 1 1 - 1 - -

Android sdk 1 1 - 1 1 1 1 - -

Apache frameworks-base - 1 1 1 1 - 1 1 1

Overall 2 4 2 4 4 2 4 2 1

Note that this study excluded entities affected by more than one smell in-

stance (e.g., a method affected by both Shotgun Surgery and Feature Envy).

The smells selected on each system are summarized in Table 8.2. For sake

of clarity, we abbreviated Divergent Change, Parallel Inheritance, and Shotgun

Surgery in DC, PI, and SS, respectively. As it can be seen, we were not able to

get the same number of instances for all the smells and for all the groups of

structural smells. However, we were able to cover all smells and groups of

smells (i.e., onlyHIST, onlyDECOR/JD, both) with at least one smell instance.

2. Defining Survey Questions. For each selected smell instance, study partici-

pants had to look at the source code and answer the following questions:

• In your opinion, does this code component2 exhibit any design and/or

implementation problem?

• If YES, please explain what are, in your opinion, the problems affecting

the code component.

• If YES, please rate the severity of the design and/or implementation

problem by assigning a score on the following five-points Likert scale

[165]: 1 (very low), 2 (low), 3 (medium), 4 (high), 5 (very high).

• In your opinion, does this class need to be refactored?

• if YES, how would you refactor this class?

2Depending on the smell object of the question, a code component could be a method, a class,

or a pair of classes.
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On the one side, for questions related to purely historical smell instances

detected by HIST, we also added hints on the change history of the code

component (i.e., the same information exploited by HIST to detect that smell

instance). This was needed to provide participants with information related

to the historical behavior of the involved code components. Indeed, it is

impossible to spot a problem as a Parallel Inheritance without knowing the

number of times the addition of a subclass to a class Ci also resulted in the

addition of a subclass to a class Cj . On the other side, for structural smells,

no metrics were shown for instances identified by HIST as well as by the

competitive techniques.

The questionnaires included six tasks3 for Apache Ant, Eclipse JDT, and

Android sdk, and seven tasks for Apache frameworks-base.

Besides the above described survey, we also asked participants to fill-in a brief

pre-questionnaire in order to assess their background. In particular, we asked:

• How many years of experience do you have in programming?

• How many years of experience do you have in industry?

• Rate your programming skills from 1=very low to 5=very high.

Note that all the questions in the survey, as well as the background questions

prefacing the survey, were designed to make sure that the survey could be com-

pleted within approximately 60 minutes. This is why we limited (i) the number

of tasks and (ii) the number of questions in the background section, since a higher

number could have resulted in a higher dropout rate before even starting the main

survey.

3By “task” we refer to the set of questions provided to a participant for each of the evaluated

smell instances.
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Data Collection

To automatically collect the answers, the survey and background questions were

hosted on a Web application, eSurveyPro4. Developers were given 40 days to re-

spond to the survey. Note that the Web application allowed developers to com-

plete a questionnaire in multiple rounds, e.g., to answer the first two questions in

one session and finish the rest sometime later. At the end of the response period,

we collected developers’ answers in a spreadsheet in order to perform data analy-

sis. As explained before, in the end we collected 12 complete questionnaires (two

developers from Apache Ant, two from Eclipse, two from Android SKD, and

six from Android Frameworks-base). Note that the developers of the four sys-

tems were invited to evaluate only the smells identified from the system that they

were working on. Indeed, we are interested in gathering only data coming from

original developers having sufficient knowledge of the analyzed source code com-

ponents. Also, developers were not aware of the code smell types investigated in

our study.

Analysis Method

To answer RQ1 we computed, for each type of historical smell:

1. The percentage of cases where the smell has been perceived by the partici-

pants. By perceived, we mean cases where participants answered yes to the

question: “In your opinion, does this code component exhibit any design or

coding problem?”

2. The percentage of times the smell has been identified by the participants. The

term identified indicates cases where besides perceiving the smell, partici-

pants were also able to identify the exact smell affecting the analyzed code

components, by describing it when answering to the question “If yes, please

explain what are, in your opinion, the problems affecting the code compo-

nent”. We consider a smell as identified only if the design problems described

4http://www.esurveyspro.com verified on September 2014.
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by the participant are clearly traceable onto the definition of the smell affect-

ing the code component. For example, given the following smell description

for the Feature Envy smell: “a method making too many calls to methods of another

class to obtain data and/or functionality”, examples of “correct” descriptions of

the problem are “the method is too coupled with the Ci class”, or “the method

invokes too many methods of the Ci class” where Ci is the class envied by the

method. On the other hand, an answer like “the method performs too many

calls” is not considered as sufficient to mark the smell as identified.

3. Descriptive statistics of answers provided by the participants to the question

“please rate the severity of the coding problem”. Note that for this point we

just considered answers provided by developers that correctly identified the

code smell.

4. The percentage of participants that answered yes to the question “does this

class need to be refactored?”. For participants answering “yes”, we also re-

port their responses to the question “how would you refactor this class?”.

By performing this analysis for each historical code smell we should be able to

verify if the instances of historical smells detected by HIST represent actual design

problems for original developers.

As for RQ2, we perform the same exact analysis for each structural smell as

described above for the historical smells. In addition, we compared the answers

provided by participants for smell instances falling into three different categories

(i.e., onlyHIST, onlyDECOR/onlyJD, and both). Given the limited number of data

points, this comparison is limited to descriptive statistics only, since we could not

perform any statistical tests.

Replication Package

All the data used in our second study are publicly available [195]. Specifically, we

provide: (i) the text of the e-mail sent to the developers; (ii) the raw data for the

answers (anonymized) provided by the developers.
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Figure 8.1: Experience of the involved developers.

8.2.2 Analysis of the Results

Before discussing the results of our two research questions, it is worthwhile to

comment on the experience of the developers involved in our study. Fig. 8.1 re-

ports the boxplots of the distribution of answers provided by developers to ques-

tions related to their experience in the background section. Twelve developers

claimed a programming experience ranging between 5 to 35 years (mean=18.5,

median=17.5), industrial experience ranging between 1 to 24 years (mean=12.7,

median=12). Most of them rated their programming skills as high. Thus, all twelve

participants had some sort of industrial experience and, most importantly, several

years of programming experience.

Are the historical code smells identified by HIST recognized as design prob-

lems by developers? Figure 8.2 reports the percentage of developers that correctly

identified the smell present in the code component. As explained in the design, we
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Figure 8.2: RQ1: percentage of identified smell instances.

computed both the percentage of developers that perceived and identified the smell5.

However, in the context of this research question all developers who perceived the

smell were also able to identify it.

In addition, Figure 8.3 reports the percentage of developers assigning each of

the five levels of severity (going from very low to very high) to the identified de-

sign/implementation problems. Finally, Table 8.3 reports the percentage of de-

velopers that suggested refactoring operations for the identified smells. Their an-

swers on how to refactor the smells are discussed in the text.

Starting from the Divergent Change instances identified by HIST, Figure 8.2

shows that developers generally recognized them as a design/implementation

5Note that the percentage of identified smells is a subset of the perceived one (see Section 8.2.1).
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Figure 8.3: RQ1: severity assigned by developers to the identified instances of

poorly historical smells detected by HIST.

Table 8.3: RQ1: percentage of developers in favor of refactoring the class among

those correctly identifying the smells.

Code Smell % in favor

Divergent Change 100%

Parallel Inheritance 100%

Shotgun Surgery 75%

problems. Indeed, the two Eclipse JDT developers, the two Android sdk de-

velopers, and four out of the six involved Android frameworks-base develop-

ers were able to perceive and identify the presence of a Divergent Change instance

in the analyzed code components. Most of these developers pointed out low cohe-

sion of the class as the root cause for the identified design problem. Low cohesion

of classes is clearly a symptom of a Divergent Change smell. Indeed, classes hav-

ing low cohesion tend to implement different responsibilities, that are likely to be

changing divergently during time. Interesting is the refactoring suggested by one

of the developers of Android frameworks-base recognizing this smell in the

PackageManagerService class:
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Make a new separate helper class for talking to the phone’s file system.

In other words, the developer is suggesting performing an Extract Class refactor-

ing aimed at removing one responsibility from the PackageManagerService,

and in particular the management of the phone file system. Concerning the sever-

ity of the problem as assessed by the developers identifying the smell, Figure 8.3

shows that 25% of them rate the severity as medium, 50% as high, and 25% as very

high. Also, all of them agreed on the need to refactor the classes affected by Diver-

gent Change.

As for the Shotgun Surgery smell, we have instances of this smell just in two out

of the four subject systems (i.e., Eclipse JDT and Android frameworks-base).

The two involved Eclipse JDT developers recognized presence of this smell, ex-

plaining how the high coupling of some of the methods contained in the MethodLocator

class could represent a design/implementation problem. Indeed, the basic ingredient for

the appearance of a Shotgun Surgery smell is to have methods depending on sev-

eral other classes.

Three of the Android framework-base developers (50%) identified the pres-

ence of a Shotgun Surgery instance in the Handler class as an implementation/de-

sign problem. One of them pointed out that:

Handler is tightly coupled to a few other classes: Message, MessageQueue and

Looper. Each class has knowledge about members of the other classes. From a

strict Object Oriented Programming perspective this is not optimal.

However, the developer explained that from his point of view in this case the class

affected by the smell should not be refactored, because:

At first glance the coupling looks like a problem, but these classes are best

viewed as one unit. If you accept that perspective, the design problem just

isn’t there. There may also be performance benefits of accessing members in the

other classes directly. For example, mLooper.mQueue instead of mLooper.getQueue().

It makes sense to trade design for performance for a class at the very core of the

message loop.
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This example shows exactly what a smell is all about: it is a symptom in the code

that may (or may not) indicate a design problem. Also, the example highlights

the importance of this evaluation. Indeed, a smell detection tool should be able

to point out smell instances representing an implementation/design problem that

software developers are interested in refactoring. Note that the developer above

is the only one who did not recognize the need to refactor Handler class. Con-

cerning the severity of the identified Shotgun Surgery instances, 70% of developers

assessed the severity as high, 15% to very high, and the remaining 15% to medium.

Thus, the instances of Shotgun Surgery identified by HIST are mostly recognized as

serious problems by the developers of these subject systems.

The Parallel Inheritance smell affects three of the subject systems (see Figure

8.2). This smell was the one among the least perceived (and identified) by devel-

opers. Still, one of the two involved developers of Eclipse JDT and Apache

Ant systems as well as both the developers of Android SDK recognized its pres-

ence, talking about problems in the design hierarchy. All four developers recognizing

the smell, assessed its severity as high and suggested to refactor it by moving re-

sponsibilities across the hierarchies. This could be done by applying move method

refactoring as well as pull up/push down method/field refactorings.

Which detection technique aimed at identifying structural code smells better

reflects developers’ perception of design problems? Starting from the Blob smell,

Figure 8.4 reports the percentage of developers who perceived (the striped columns)

and identified (the filled columns) the Blob instances belonging to the onlyHIST, on-

lyDECOR, and both groups. Also, the left part of Figure 8.5 reports the percentage

of developers assigning each of the five severity levels (going from very low to very

high) to the identified Blobs. Finally, the top part of Table 8.4 reports the percentage

of developers that suggested a refactoring for the identified Blobs.

We have instances of Blobs identified only by HIST on all four subject sys-

tems. Among the twelve involved developers, only one developer of Android

frameworks-base did not recognize the evaluated Blob instance belonging to

the onlyHIST group. The remaining eleven developers (92%) clearly described the
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Figure 8.4: RQ2: percentage of perceived and identified Blob instances.

problem affecting the analyzed class. For example, an Eclipse JDT developer,

referring to the analyzed class SourceMapper, wrote: “this is a well known Blob

in Eclipse”; an Android frameworks-base developer explained, evaluating the

class WindowManagerService: “it is a very large and complex class”. The eleven

developers recognizing the Blob instances also evaluated the severity of the prob-

lem as high (18%) or very high (82%)—see left part of Figure 8.5—manifesting the

willingness to refactor such classes in 100% of cases (see Table 8.4). Most of the

developers suggested to perform an Extract Class refactoring to remove the smell

(e.g., “make the class easier to comprehend by splitting its responsibilities into different

classes”, from an Android frameworks-base developer). Thus, the Blob instances de-

tected by HIST and missed by the competitive technique (i.e., DECOR) have been
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Figure 8.5: RQ2: severity assigned by developers to the identified instances of

poorly historical smells detected by HIST (onlyHIST), by the competitive technique

(onlyDECOR or onlyJD), and by both.

mostly recognized by developers as design/implementation problems. Also, the

developers recognized the high severity of the issue caused by the presence of the

smell, manifesting the willingness to refactor such classes.

As for the Blob instances detected by DECOR and missed by HIST, nine out

of the twelve developers (75%) recognized them as design/implementation prob-

lems. In addition, one of the Apache Ant developers perceived the smell but failed

to identify it6 (see Figure 8.4). Concerning the severity assessed for the Blob in-

stances identified in the onlyDECOR group, Figure 8.5 shows that 34% of develop-

ers selected a low severity, 22% medium, 22% high, and 22% very high. Also, 78% of

developers recognized the need to refactor those Blob instances.

The third group of Blob instances to analyze is the one grouping together Blobs

detected by both HIST and DECOR (both groups). We have instances of these Blobs

only in Apache Ant and Android SDK. Interestingly, all developers recognized

6The developer described problems in a method manipulating jar files.
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Table 8.4: RQ2: percentage of developers in favor of refactoring the class among

those correctly identifying the smells.

Code Smell Detected by % in favor

Blob

onlyHIST 100%

onlyDECOR 78%

both 100%

Feature Envy

onlyHIST 100%

onlyJD 100%

both 100%

the Blob instances belonging to the both group, even if the severity assigned to

them is lower than the severity assigned to the instances belonging to the onlyHIST

group (see Figure 8.5). This result is quite surprising. Indeed, one would expect a

very high severity for smells identified by both detection techniques. Still, the as-

sessed severity is medium (25%), high (25%), or very high (50%). Moreover, in 100%

of the cases developers agreed on the importance of refactoring the Blob instances

belonging to the both group.

Summarizing, the Blob instances detected by both techniques are the ones that

are mostly recognized by developers (100% of the developers), followed by the

ones detected by HIST only (95%) and those detected by DECOR only (75%). The

instances recognized as more severe problems are those identified by HIST only

(82% very high), followed by those detected by both techniques (50% very high),

and those detected by DECOR only (22% very high). Finally, all the developers

agreed on refactoring the Blob instances detected by both techniques as well as

those detected by HIST only, while 78% of developers agreed on refactoring the

onlyDECOR instances.

Thus, when comparing HIST to DECOR, the Blob instances detected by DECOR

only are (i) identified by fewer developers, (ii) evaluated with a much lower sever-

ity level, and (iii) recognized as less likely refactoring opportunities by developers.
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Figure 8.6: RQ2: percentage of perceived and identified Feature Envy instances.

Still, the fact that 75% of developers recognized the smells points out to the conclu-

sion that complementing HIST with structural information (e.g., DECOR) could be

a worthwhile direction in order to identify currently missed Blob instances. This

result confirms the results of our first study, further highlighting complementarity

of the two techniques.

Turning the attention on the Feature Envy smell, Figure 8.6 shows the percent-

age of developers who perceived (the striped columns) and identified (the filled

columns) the Feature Envy instances belonging to the onlyHIST, onlyJD, and both

groups. As before, Figure 8.5 (right part) reports the severity assigned by devel-

opers to the identified smell instances, while Table 8.4 reports the percentage of

developers that would like to refactoring the smell.
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The Feature Envy instances falling in the onlyHIST group (black columns in Fig-

ure 8.6) have been recognized as design/implementation problems by nine out

of twelve (75%) involved developers. In particular, all the developers of Apache

Ant, Android sdk, and Eclipse JDT identified the smell instances, while only

three of the six Android framework base developers recognized the problem.

Developers recognizing the problem generally described the issue explaining that

the analyzed method has high coupling with another class (i.e., the envied class).

For example, while analyzing the method generateCode of the class named

AND AND Expression (Eclipse JDT project), one of the developers explained

that “generateCode is a very complex method and it is highly coupled with the CodeStream

class”. CodeStream is exactly the class identified by HIST as the envied class for

the generateCode method.

Concerning the severity assigned to the smell by the nine developers identi-

fying it, 67% rated it as high, while 33% as medium (see Figure 8.5). Moreover, all

nine developers suggested to refactor this smell (see Table 8.4) proposing a Move

Method toward the envied class, or an Extract Method followed by a Move Method.

As for the Feature Envy instances identified by JDeodorant only, we have in-

stances of them on the Apache Ant and the Android framework base sys-

tems. On Apache Ant both developers perceived a problem in the analyzed Fea-

ture Envy instance (i.e., the run method from the ClearCase class), but only one

correctly identified the smell. On the Android framework base, among the

six involved developers three identified a Feature Envy in the method under anal-

ysis (i.e., executeLoad from the FrameLoader class). Thus, four out of the eight

evaluators (50%) identified the Feature Envy instances in the onlyJD group. All of

them assessed the severity of the spotted instances of the smell as medium, mani-

festing some readiness to refactor them.

Finally, the only instance falling in the both group belongs to the Android SDK

system. This instance has been identified by both involved developers, that as-

sessed its severity as high, and suggested a Move Method refactoring to solve the

problem. This confirms, in part, what we observed for the Blob smell: when both

HIST and the techniques based on a single snapshot analysis detect a code smell,
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all involved developers identify the smell and suggest appropriate refactoring op-

eration.

Summarizing, the Feature Envy instances detected by both techniques are the

most recognized by developers (100% of developers), followed by the ones de-

tected by HIST only (75%) and those detected by JDeodorant only (38%). Also,

the instances recognized as more severe problems are those detected by both tech-

niques (100% high), followed by those detected by HIST only (67% high), and those

detected by JDeodorant only (100% medium). Despite these differences, all the de-

velopers identifying the Feature Envy instances falling in the three different groups

(i.e., onlyHIST, onlyJD, and both) suggested to refactor them.

8.3 Threats to Validity

This section discusses the threats that could affect the validity of the study.

Construct Validity. Threats to construct validity are mainly related to how we mea-

sured the developers’ perception of smells. As explained in Section 8.2.1, we asked

developers to tell us whether they perceived a problem in the code shown to them.

In addition, we asked them to explain what kind of problem they perceived to un-

derstand whether or not they actually identify the smell affecting the code com-

ponent as the design and/or implementation problem. Finally, for the severity

we used a Likert scale [165] that permits the comparison of responses from multi-

ple respondents. We are aware that questionnaires could only reflect a subjective

perception of the problem, and might not fully capture the extent to which the

smell instances identified by HIST and by the competitive techniques are actually

perceived by developers.

Internal Validity. A factor that could have affected the results of the study is the

response rate: while appearing not very high (11%), it is inline what it is normally

expected in survey studies (i.e., below 20% [167]). Note also that we just targeted

for this study original developers of the four open source systems, without taking

into account the possibility of involving students or people with no experience on
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the object systems. Still, we cannot ensure that the involved developers had a good

knowledge of the specific code components used in our surveys. An alternative

design would have been to invite only developers actually involved in the devel-

opment of the specific code components evaluated in our survey. However, (i) the

different code components present in our survey are evolved and maintained by

different developers, and (ii) this would have resulted in a much lower number of

developers invited, having as a consequence a very likely drop in the number of

participants in our study.

Also, we tried to keep the questionnaire as short as possible to have more de-

velopers answering our survey. For instance, we did not include any questions on

non-smelly code entities as sanity check in our survey. Thus, we cannot exclude

that participants always indicated that the analyzed code components contained

a design/implementation problem and the problem was a serious one. However,

this holds for the smell instances identified by HIST as well as for those identified

by the competitive techniques.

It must be clear that even if developers recognized most of the code smell in-

stances identified by HIST and declared that they wanted to refactor them, this

does not always mean that it is possible to take proper refactoring actions aimed

at removing those smells. Indeed, some systems—e.g., Eclipse JDT—contain

classes that naturally tend to become smelly. For example, parsers (largely present

in the Eclipse JDT) are often affected by the Blob code smell [27], and are diffi-

cult to remove without taking important (and expensive) refactoring actions.

External Validity. Threats to external validity concern the generalization of the re-

sults. In this category, they can be related to the set of chosen objects and to the

pool of the participants to the study. Concerning the chosen objects, we are aware

that our study is based on smell instances detected in four Java systems only, and

that further studies are needed to confirm our results. In this study we had to

constrain our analysis to a limited set of smell instances, because the task to be

performed by each respondent had to be reasonably small (to ensure a decent re-

sponse rate).
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8.4 Conclusion

In this Chapter, we conducted a qualitative study aimed at understanding to what

extent the code smells identificable by HIST are considered as actual design prob-

lems by the developers. We also evaluate what is the difference in terms of percep-

tion between historical and structural code smells. To this aim, we involved twelve

original developers of four open source systems. The results achieved indicated

that over 75% of smell instances identified by HIST are also recognized by devel-

opers as actual design/implementation problems. In addition, this study showed

that smell instances identified by both HIST and the single-snapshot techniques

are the ones that perfectly match developers’ perception of design/implementa-

tion problems. This result highlights once again the need of having hybrid smell

detection approaches able to efficiently combine static code analysis with analysis

of co-changes. Finally, we would like to perform a deeper investigation into the

characteristics causing a smell instance to represent/not represent a problem for

developers.
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Chapter 9

A Textual-based Approach for Code

Smell Detection

9.1 Introduction

Continuous change requests, strict and close deadlines, the need to preserve the

quality of source code to ease maintenance are just some of the challenges that de-

velopers must face every day. In such a scenario, finding the solution that provides

the maximum gain from each point of view is quite impossible. Very often, due to

time constraints or absence of software design documentation, developers decide

to set aside good programming guidelines and implement a new change request

in the most straightforward way. As a consequence, the original design tends to

be eroded, leading to the introduction of technical debts [5]. One of the main causes

for technical debts are represented by “bad code smells” (a.k.a., “code smells” or

simply “smells”) [8], namely poor design or implementation choices applied by

programmers during the development of a software system.

Over the last decade, researchers investigated several aspects related to the

presence of code smells, demonstrating (i) their relevance from the developers’

perspective [50, 134], (ii) their longevity [14, 13, 15, 12, 107], and (iii) their im-

pact on non-functional properties of source code, such as program comprehension

[18], change- and fault-proneness [16, 17], and, more in general, on maintainability

234



Chapter 9. A Textual-based Approach for Code Smell Detection

[9, 118, 117, 2]. For these reasons the research community devoted a lot of effort

to define methods to detect code smells in source code and, whenever possible,

trigger refactoring operations [20, 25, 21, 23, 26, 22, 24]. These tools generally ap-

ply constraint-based detection rules defined on some source code metrics, i.e., the

majority of existing approaches try to detect code smells through the analysis of

structural properties of code components (e.g., methods).

Analyzing the catalogue of smells defined in the literature, it is easy to identify

a specific family of smells that are represented by source code components with

promiscuous responsibilities. For example, a Blob is a giant class that centralizes

the behavior of a portion of the system and has a lot of different responsibilities,

while a Feature Envy refers to a method more related to a different class with re-

spect the one it is actually in. Even if these smells, such as Blob, are generally iden-

tified by considering structural properties of the code (see for instance [20]), there

is still room for improving their detection by exploring other sources of informa-

tion. Indeed, Palomba et al. [52] recently proposed the use of historical information

for detecting several bad smells, including Blob. At the same time, components

with promiscuous responsibilities may be identified also considering the textual

coherence of the source code vocabulary (i.e., terms extracted from comments and

identifiers).

To explore this conjecture, we proposed TACO (Textual Analysis for Code

smell detectiOn), a code smell detector purely based on Information Retrieval

(IR) methods. Specifically, we instantiated TACO for detecting five code smells,

i.e., Long Method, Feature Envy, Blob, Promiscuous Package and Misplaced Class. We

empirically evaluated the performances of TACO on 20 open source software sys-

tems, finding that our detector achieves good precision and recall for all the con-

sidered smells. Moreover, when compared with state-of-the-art techniques solely

based on structural analysis, i.e., DECOR [20], JDeodorant [25], and the approaches

proposed in [196] and [76], we experienced that most of the times TACO outper-

forms these existing approaches.
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Figure 9.1: TACO: The proposed code smell detection process.

9.2 Detecting Code Smells Using Information Retrieval

Techniques

Figure 9.1 depicts the main steps used by TACO in order to compute the proba-

bility of a code component being affected by a smell, which are (i) Textual Content

Extractor, (ii) IR Normalization Process, and (iii) Smell Detector.

Textual Content Extractor. Starting from the set of code artifacts composing the

software project under analysis, the first step is responsible for the extraction of the

textual content characterizing each code component by selecting only the textual

elements actually needed for the textual analysis process, i.e., source code identi-

fiers and comments.

IR Normalization Process. Identifiers and comments of each component are firstly

normalized by using a typical Information Retrieval (IR) normalization process.

Thus, the terms contained in the source code are transformed by applying the fol-

lowing steps [55]: (i) separating composed identifiers using the camel case split-
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ting which splits words based on underscores, capital letters and numerical digits;

(ii) reducing to lower case letters of extracted words; (iii) removing special char-

acters, programming keywords and common English stop words; (iv) stemming

words to their original roots via Porter’s stemmer [197]. Finally, the normalized

words are weighted using the term frequency - inverse document frequency (tf-idf )

schema [55], which reduces the relevance of too generic words that are contained

in most source components.

Smell Detector. The normalized textual content of each code component is then

individually analyzed by the Smell Detector, which applies different heuristics to

identify target smells. The detector relies on Latent Semantic Indexing (LSI) [198],

an extension of the Vector Space Model (VSM) [55], which models code compo-

nents as vectors of terms occurring in a given software system. LSI uses Singular

Value Decomposition (SVD) [199] to cluster code components according to the re-

lationships among words and among code components (co-occurrences). Then,

the original vectors (code components) are projected into a reduced k space of

concepts to limit the effect of textual noise. For the choice of size of the reduced

space (k) we used the heuristic proposed by Kuhn et al. [200] that provided good

results in many software engineering applications, i.e., k = (m ⇥ n)0.2 where m

denotes the vocabulary size and n denotes the number of documents (code com-

ponents in our case). Finally, the textual similarity among software components

is measured as the cosine of the angle between the corresponding vectors. The

similarity values are then combined in different ways, according to the type of

smell we are interested in, to obtain a probability that a code component is actu-

ally smelly. For detection purpose, we convert such a probability in a truth value

in the set {true, false} to denote whether a given code component is affect

or not by a specific smell. In the context of this chapter, we instantiated TACO

for detecting five code smells, namely (i) Long Method, (ii) Feature Envy, (iii) Blob,

(iv) Promiscuous Package, and (v) Misplaced Class. We have instantiated TACO on

these code smells in order to demonstrate how textual analysis can be useful for

detecting smells at different levels of granularity (i.e., method-level, class-level,
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and package-level). Moreover, all the selected smells violate, in different ways,

the OOP single responsibility principle [201, 202]. For instance, a Blob class im-

plements more than one responsibility, while a Feature Envy is a method which

has a different responsibility with respect to the one implemented in the class it

is actually in. This peculiar characteristic makes them particularly suitable for a

textual-based technique, since the higher the number of the responsibilities implemented

in a code component, the higher the probability that such a component contains heteroge-

neous identifiers and/or comments. In the following subsections, we detail how the

general process depicted in Figure 9.1 has been applied for detecting the smells

described above.

9.2.1 Computing Code Smell Probability

Long Method. This smell arises when a method implements a main functionality,

together with auxiliary functions that should be managed in different methods.

The refactoring associated with such a smell is clearly the Extract Method1, which

allows the identification of portions of the method that should be treated sepa-

rately, with the aim to create new methods for managing them [8]. It is worth

noting that the definition of the smell strongly differs from its name, since this

smell is only partially related to the size of a method. Rather, it is related to how

much responsibilities a method manages, i.e., whether a method violates the single

responsibility principle.

Textual Diagnosis. Given the definition above, our conjecture is that a method is

affected by this smell when it is composed of sets of statements semantically distant to

each other. In order to detect the different sets of statements composing the method,

we re-implemented SEGMENT, the approach proposed by Wang et al. [203], which

uses both structural analysis and naming information to automatically segment

a method into a set of “consecutive statements that logically implement a high level

action” [203]. Once we identified the sets of statements (i.e., segments) composing

1More details about refactoring operations defined in literature can be found in the refactoring

catalog available at http://refactoring.com/catalog/
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the method, we considered each of them as a single document. Then, for each pair

of documents, we apply LSI [204] and the cosine similarity to have a similarity

value. More formally, let M be the method under analysis, let S = {s1, . . . , sn} be

the set of segments in M , we compute the textual cohesion of the method M as the

average similarity between all pairs of its segments:

MethodCohesion(M) = mean

i 6=j
sim(si, sj) (9.1)

where n is the number of code segments in M , and sim(si, sj) denotes the co-

sine similarity between two segments si and sj in M . Starting from our definition

of textual cohesion of M , we compute the probability that M is affected by Long

Method using the following formula:

PLM(M) = 1� MethodCohesion(M) (9.2)

It is worth noting that PLM(M) ranges in [0; 1]. The higher its value, the higher the

probability that method M represents a Long Method instance.

Feature Envy. According to Fowler’s definition [8], this smell occurs when “a

method is more interested in another class than the one it is actually in”. Thus, a method

affected by Feature Envy is not correctly placed, since it exhibits high coupling

with a class different than the one where it is located in. To remove this smell, a

Move Method refactoring aimed at moving it to the more suitable class is needed.

Textual Diagnosis. When computing the probability that a method is affected

by such a smell, we conjecture that a method more interested in another class is char-

acterized by a higher similarity with the concepts implemented in the envied class, with

respect to the concepts implemented in the class it is actually in. Let M be the method

under analysis belonging to the class CO, and let Crelated = {C1, . . . , Cn} be the set

of classes in the system sharing at least one term with M . First, we derive the class

(Cclosest) having the highest textual similarity with M as follows:

Cclosest = argmax

Ci2Crelated

sim(M,Ci) (9.3)

Then, if Cclosest is not the class where M is actually placed in (i.e., Cclosest 6= CO),
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then, M should be moved to the class Cclosest. Therefore, we compute the proba-

bility for M to be a Feature Envy instance as:

PFE(M) = sim(M,Cclosest)� sim(M,CO) (9.4)

The formula above is equal to zero when Cclosest = CO, i.e., the method M is cor-

rectly placed. Otherwise, if Cclosest 6= CO, the probability is equal to the difference

between the textual similarities of M and the two classes Cclosest and CO.

Blob. These classes are usually characterized by a huge size, a large number of

attributes and methods and a high number of dependencies with data classes [8].

This smell involves low cohesive classes that are responsible for the management

of different functionalities. The Extract Class refactoring is the more suitable oper-

ation that can be applied for removing this smell type, since it allows to split the

original class by creating new classes, re-distributing its responsibilities.

Textual Diagnosis. Our conjecture is that Blob classes are characterized by a se-

mantic scattering of contents. More formally, let C be the class under analysis, let

M = {M1, . . . ,Mn} be the set of methods in C, we compute the textual cohesion of

the class C as defined by Marcus and Poshyvanyk [45]:

ClassCohesion(C) = mean

i 6=j
sim(Mi,Mj) (9.5)

where n is the number of methods in C, and sim(Mi,Mj) denotes the cosine sim-

ilarity between two methods Mi and Mj in C. Therefore, we compute the proba-

bility that C is affected by Blob using the following formula:

PB(C) = 1� ClassCohesion(C) (9.6)

Also in this case, PB(C) ranges in [0; 1].

Promiscuous Package. A package can be considered as promiscuous if it contains

classes implementing too many features, making it too hard to understand and

maintain [8]. As for Blob, this smell arises when the package has low cohesion,

since it manages different responsibilities. In this case, to refactor the smell an

Extract Package operation is needed for split the package in more sub-packages,

re-organizing the responsibilities of the original promiscuous package.
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Textual Diagnosis. We conjecture that packages affected by this smell are char-

acterized by subset of classes semantically distant from the other classes of the package.

Formally, let P be the package under analysis, and let C = {C1, . . . , Cn} be the

set of classes in P , the textual cohesion of the package P is defined as done by

Poshyvanyk et al. [182]:

PackageCohesion(P ) = mean

i 6=j
sim(Ci, Cj) (9.7)

where n is the number of classes in P , and sim(Ci, Cj) is the cosine similarity be-

tween two classes Ci and Cj in P . Given such definition, we define the probability

that P is a Promiscuous Package using the formula below:

PPP (P ) = 1� PackageCohesion(P ) (9.8)

PPP (P ) assumes values in the range [0; 1].

Misplaced Class. A Misplaced Class smell suggests a class that is in a package

that contains other classes not related to it [8]. The obvious way to remove such a

smell is to apply a Move Class refactoring able to place the class in a more related

package.

Textual Diagnosis. Our conjecture is that a class affected by this smell is seman-

tically more related to a different package with respect to the package it is actually in.

Let C be the class under analysis, contained in the package PO, and let Prelated =

{P1, . . . , Pn} be the set of packages that share at least one term with C. We firstly

retrieve the package with the highest textual similarity with C, using the following

formula:

Pclosest = argmax

Pi2Prelated

sim(C, Pi) (9.9)

Then, if Pclosest is different from the package where the class C is actually placed in

(i.e., Pclosest 6= PO), then C should be moved to the package Pclosest. More formally,

we compute the probability C is affected by a Misplaced Class as:

PMC(C) = sim(C, Pclosest)� sim(C, PO) (9.10)
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As in the case of Feature Envy, the value is equal to zero if Pclosest = PO. Other-

wise, if Pclosest 6= PO, the probability is equal to the difference between the textual

similarities of C and the two packages Pclosest and PO.

9.2.2 Applying TACO to Code Smell Detection

TACO assigns a smelliness probability to each code component according to the

textual diagnosis metrics reported above. In the context of smell detection, we

need to convert such probabilities in a truth value in the set {true, false}.

Thus, we need to discriminate when a probability indicates the presence of a given

smell with respect to the cases where such probability is not enough for consider-

ing a code component affected by a smell. After different experiments aimed at

identifying the optimal cut-off point, we found that the best results are obtained

when using as threshold the median of the non-null values of the probability dis-

tribution of the system under analysis. Interested readers can find the results of

such a calibration analysis in our online appendix [205].

9.3 The Accuracy of TACO

In this section we discuss the empirical study we conducted in order to evauate

the ability of the proposed code smell detector in identifying code components

affected by design flaws.

9.3.1 Empirical Study Definition and Design

The goal of the study is to evaluate TACO, with the purpose of investigating its

effectiveness during the detection of code smells in software systems. The qual-

ity focus is on the detection accuracy and completeness when compared to the ap-

proaches based purely on structural analysis. The perspective is of researchers, who

want to evaluate the effectiveness of textual analysis for detecting code smells for

building better recommenders for developers.
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Table 9.1: Characteristics of the Software Projects in Our Dataset

System #Releases #Commits Classes Methods KLOCs

ArgoUML 16 19,961 777-1,415 6,618-10,450 147-249

Apache Ant 22 13,054 83-813 769-8,540 20-204

aTunes 31 6,276 141-655 1,175-5,109 20-106

Apache Cassandra 13 20,026 305-586 1,857-5,730 70-111

Eclipse Core 29 21,874 744-1,181 9,006-18,234 167-441

FreeMind 16 722 25-509 341-4,499 4-103

HSQLDB 17 5,545 54-444 876-8,808 26-260

Apache Hive 8 8,106 407-1,115 3,725-9,572 64-204

Apache Ivy 11 601 278-349 2,816-3,775 43-58

Apache Log4j 30 2,644 309-349 188-3,775 58-59

Apache Lucene 6 24,387 1,762-2,246 13,487-17,021 333-466

JEdit 29 24,340 228-520 1,073-5,411 39-166

JHotDraw 16 1,121 159-679 1,473-6,687 18-135

JVLT 15 623 164-221 1,358-1,714 18-29

Apache Karaf 5 5,384 247-470 1,371-2,678 30-56

Apache Nutch 7 2,126 183-259 1,131-1,937 33-51

Apache Pig 8 2,857 258-922 1,755-7,619 34-184

Apache Qpid 5 14,099 966-922 9,048-9,777 89-193

Apache Struts 7 4,297 619-1,002 4,059-7,506 69-152

Apache Xerces 16 5,471 162-736 1,790-7,342 62-201

Overall 301 183,514 25-2,246 188-17,021 4-466

The context of the study consists of twenty open source software projects. Table

9.1 reports the characteristics of the analyzed systems2, namely the number of pub-

lic releases, and their size in terms of number of commits, classes, methods, and

KLOC. Among the analyzed projects, we have twelve projects belonging to the

Apache ecosystem3, and eight open source projects from elsewhere. Note that our

choice of the subject systems is not random, but instigated by our aim to analyze

projects belonging to different ecosystems, having different size and scope.

In this study, we investigate the following research questions:

• RQ1: What is the accuracy of TACO in detecting code smells?
2The list of repositories is available in our online appendix [205]
3http://www.apache.org/ verified on November 2016
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• RQ2: How does TACO perform when compared with state-of-the-art techniques

purely based on structural analysis?

• RQ3: To what extent is TACO complementary with respect to the structural-based

code smell detectors?

To answer RQ1 we run TACO on the selected software projects. To evaluate

its accuracy, we needed an oracle reporting the actual code smells contained in

the considered systems. For all of the code smells considered in this chapter, an

annotated set of such smells is publicly available in literature [60].

Once obtained the set of smells detected by TACO on each software project, we

evaluated its performances by using two widely adopted Information Retrieval

(IR) metrics, i.e., precision and recall [55]:

precision =

|TP |
|TP [ FP |% recall =

|TP |
|TP [ FN |% (9.11)

where TP and FP represent the set of true and false positive smells detected

by TACO, respectively, while FN (false negatives) represents the set of smell in-

stances in the oracle missed by TACO. To have an aggregate indicator of precision

and recall, we also report the F-measure, defined as the harmonic mean of preci-

sion and recall:

F -measure = 2 ⇤ precision ⇤ recall
precision+ recall

% (9.12)

To answer RQ2, we run code smell detection techniques purely based on struc-

tural analysis on the same software projects on which we run TACO. For Long

Method and Blob smells we compared TACO with DECOR, the structural detection

approach proposed by Moha et al. [20]. Since a tool implementing the approach is

not publicly available, we re-implemented the detection rules defined by DECOR,

which are available online4. For the Feature Envy smell, we considered JDeodorant
4http://www.ptidej.net/research/designsmells/grammar/
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as the alternative approach [25]. JDeodorant is available as open source Eclipse

plug-in5. The technique behind JDeodorant analyzes attributes and method calls

of each method in the system under analysis with the aim to form a set of candidate

target classes where the method should be moved. As for Promiscuous Package, we

compared TACO with the clustering-based algorithm proposed by Girvan et al.

[196], where classes are grouped using the dependencies among them. Finally, for

Misplaced Class, we used the approach proposed by Atkinson and King [76], which

traverse the abstract syntax tree of a class in order to determine, for each feature,

the set of classes referencing them. In this case, a class is affected by Misplaced Class

if it has more dependencies with a different package with respect to the one it is

actually in.

Even if in literature several other approaches have been defined for smell de-

tection, our choice of the alternative techniques has been guided by (i) the avail-

ability of a tool (e.g., JDeodorant), or (ii) the simplicity of a re-implementation, in

order to avoid possible errors due to a wrong implementation. To compare the

performance achieved by TACO with those of the alternative structural detection

techniques, we used the same set of accuracy metrics used for measuring TACO’s

results, i.e., recall, precision, and F-measures.

Finally, to answer RQ3, we compared the sets of smell instances correctly de-

tected by TACO and by the alternative approaches by computing the following

overlap metrics:

correctmi\mj =

|correctmi \ correctmj |
|correctmi [ correctmj |

% (9.13)

correctmi\mj =

|correctmi \ correctmj |
|correctmi [ correctmj |

% (9.14)

where correctmi represents the set of correct code smells detected by the approach

mi, correctmi\mj measures the overlap between the set of true code smells detected

5http://www.jdeodorant.com/
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Table 9.2: Long Method - TACO accuracy compared to DECOR.

Project

#Actual TACO DECOR

Smells Det. TP FP Prec. Rec. F-M Det. TP FP Prec. Rec. F-M

ArgoUML 49 60 47 13 78% 96% 86% 69 34 35 49% 69% 58%

Apache Ant 52 73 50 23 68% 96% 80% 46 29 17 63% 56% 59%

aTunes 11 12 9 3 75% 81% 78% 16 2 14 13% 18% 15%

Apache Cassandra 10 11 8 3 73% 80% 76% 12 6 6 50% 60% 55%

Eclipse Core 89 93 69 24 74% 78% 76% 304 73 231 24% 82% 37%

FreeMind 12 13 10 3 77% 83% 80% 12 8 4 67% 67% 67%

HSQLDB 75 92 64 28 70% 85% 77% 97 52 45 54% 69% 60%

Apache Hive 53 64 45 19 70% 85% 77% 75 35 40 47% 66% 55%

Apache Ivy 18 21 16 5 76% 89% 82% 12 9 3 75% 50% 60%

Apache Log4j 4 4 2 2 50% 50% 50% 5 2 3 40% 50% 44%

Apache Lucene 82 101 66 35 65% 80% 72% 172 58 114 34% 71% 46%

JEdit 12 16 10 6 63% 83% 71% 19 6 13 32% 50% 39%

JHotDraw 13 18 11 7 61% 85% 71% 36 5 31 14% 38% 20%

JVLT 7 8 5 3 63% 71% 67% 5 3 2 60% 43% 50%

Apache Karaf 21 24 19 5 79% 90% 84% 14 10 4 71% 48% 57%

Apache Nutch 17 21 15 6 71% 88% 79% 12 7 5 58% 41% 48%

Apache Pig 33 38 28 10 74% 85% 79% 111 21 90 19% 64% 29%

Apache Qpid 39 46 32 14 70% 82% 75% 53 22 31 42% 56% 48%

Apache Struts 27 37 23 14 62% 85% 72% 32 12 20 38% 44% 41%

Apache Xerces 27 30 23 7 77% 85% 81% 74 23 51 31% 85% 46%

Overall 651 782 552 230 71% 85% 77% 1,176 417 759 35% 64% 46%

by both approaches mi and mj , and correctmi\mj appraises the true smells detected

by mi only and missed by mj . The latter metric provides an indication of how

a code smell detection technique contributes to enriching the set of correct code

smells identified by another approach. This information can be used to analyze

the complementarity of structural and textual information when performing code

smell detection.

9.3.2 Analysis of the Results

This section reports the results of our study, with the aim of addressing the re-

search questions formulated in the previous section. To avoid redundancies, we re-

port the results for all the three research questions together, discussing each smell
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Table 9.3: Overlap between TACO and the structural techniques (ST). For Long

Method and Blob the structural technique is DECOR, for Feature Envy it is

JDeodorant, for Promiscuous Package it is the approach proposed in [196], for

Misplaced Class the approach proposed in [76].

Code Smell
TACO\ST TACO\ST ST\TACO

# % # % # %

Long Method 364 60% 188 31% 53 9%

Feature Envy 101 46% 58 26% 62 28%

Blob 138 42% 138 42% 49 16%

Promiscuous Package 43 28% 78 51% 33 21%

Misplaced Class 12 21% 39 67% 8 12%

separately. Tables 9.2, 9.4, 9.5, 9.6, and 9.7 show the results achieved by TACO

and by the structural approaches on the ten subject systems for Long Method, Fea-

ture Envy, Blob, Promiscuous Package and Misplaced Class, respectively. Specifically,

we report (i) the number of actual components affected by a smell (column #Ac-

tual Smells), (ii) the number of components detected as smelly by the textual and

structural approaches (column Det), (iii) the number of true and false positive in-

stances identified by each approach (columns TP and FP), and (iv) accuracy met-

rics for each approach involved in a comparison, in terms of precision, recall, and

f-measure. In addition, Table 9.3 reports values concerning overlap and differ-

ences between TACO and the structural techniques: column “TACO \ ST” reports

the percentage of correct smell instances detected by both TACO and the alterna-

tive structural approach; column “TACO \ ST” reports the percentage of correct

code smells correctly identified by TACO but missed by the structural technique;

finally, column “ST \ TACO” reports the percentage of correct code smells identi-

fied by the structural technique but not by TACO. In the following, we discuss the

results for each smell type.
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Long Method Discussion

In the set of subject systems, we found 651 instances of this smell. The analysis of

the results indicates that a textual approach more accurately detects instances of

the Long Method smell. Specifically, the F-measure on the overall dataset of TACO

is 77% (85% of recall and 71% of precision) against 46% (64% of recall and 35% of

precision) achieved by the alternative approach. The low accuracy achieved by

DECOR is due to the fact that the number of lines of code (LOC) of a method

only tells a part of the whole story. Indeed, there are several cases in which a

method is cohesive even though the large size of the method can indicate the pres-

ence of such a smell. The use of textual analysis is able to better discriminate

whether a method implements more than one functionality. Of particular interest

is the case of the Eclipse Core project: Here we found several methods hav-

ing more than 100 LOC, implementing intrinsically complex operations, but not

characterized by the presence of a Long Method smell. For example, the method

createSingleAssistNameReference of the class CompletionParser needs

to parse the actual content of the IDE workspace in order to automatically sug-

gest to developers the methods she can use in her context. Although the method

has 113 LOC, it can not be considered a Long Method smell, since it has a focused

responsibility implemented across multiple lines. However, the DECOR rule de-

tects this method as affected by the smell. Conversely, TACO correctly discards

it from the candidate smell set. Moreover, our approach is able to identify differ-

ent types of Long Method instances with respect to the ones a structural technique

can identify. As an example, the method findTypesAndPackages of the class

CompletionEngine, allows to discover the classes and the packages of a given

project. Clearly, this method manages different tasks, even if its size is not large

(i.e., 58 lines of code). This means that the use of textual analysis is actually use-

ful to avoid the identification of many false positive candidates, but also to detect

instances of Long Method that the structural technique is not able to detect. This

claim is supported by the results achieved when analyzing the overlap between

TACO and DECOR (see Table 9.3). Indeed, we observed an overlap of 60%, i.e.,
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60% of the actual Long Method instances are correctly detected by both TACO and

DECOR, while it is interesting to note that TACO is able to correctly detect 31% of

instances that DECOR is not able to detect. Finally, 9% of instances are correctly

identified by DECOR and missed by TACO. An example of a Long Method instance

correctly identified by DECOR and missed by TACO can be found in the class

RetrieveEngine of the Apache Ivy project, where the method retrieve is

characterized by 165 LOC. This method implements the basic operation of find-

ing the settings of the machine Ivy is working on, however it also has an aux-

iliary function checking whether or not the settings are up to date. The textual

approach fails in the detection of this smell because of the consistent vocabulary

of the method. The achieved results highlight a tangible potential of combining

structural and textual information for detecting this type of smell. We are plan-

ning to tackle this combination as part of our future work.

Feature Envy Discussion

For the Feature Envy smell, we found a total of 228 affected methods in our dataset.

TACO has been able to identify 159 of them (recall of 70%), against the 163 detected

by JDeodorant (recall of 71%). On the other hand, the precision obtained by TACO

is higher than the one achieved by JDeodorant (69% against 61%). Overall, TACO’s

F-Measure is higher than JDeodorant (69% against 66%), and our approach outper-

forms the alternative one on 13 out of 20 systems (65% of the times). It is important

to note that JDeodorant is a refactoring tool and, as such, it identifies Feature Envy

smells with the purpose of suggesting opportunities of Move Method refactoring.

Thus, the tool detects the smell only if the application of the refactoring is actu-

ally possible. To this aim, JDeodorant checks some preconditions to ensure that

the program behavior does not change after the application of the refactoring [25].

For example, one of the preconditions considered is that the envied class does not

contain a method having the same signature as the moved method [25]. In order to set

a fair comparison with our approach, we filtered the Feature Envy instances found

by our approach, using the same set of preconditions defined by JDeodorant [25].

During this step, we removed 1 correct instances and 3 false positives from the
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Table 9.4: Feature Envy - TACO accuracy compared to JDeodorant.

Project

#Actual TACO DECOR

Smells Det. TP FP Prec. Rec. F-M Det. TP FP Prec. Rec. F-M

ArgoUML 5 4 3 1 75% 60% 67% 7 4 3 57% 80% 67%

Apache Ant 8 9 6 3 67% 75% 71% 13 2 11 15% 25% 19%

aTunes 8 10 6 4 60% 75% 67% 16 6 10 34% 75% 50%

Apache Cassandra 28 21 18 3 86% 64% 73% 28 28 0 100% 100% 100%

Eclipse Core 3 4 2 2 50% 67% 57% 0 0 0 0% 0% 0%

FreeMind 1 2 1 1 50% 100% 67% 5 0 5 0% 0% 0%

HSQLDB 14 14 9 5 64% 64% 64% 19 9 10 47% 64% 55%

Apache Hive 22 17 15 2 88% 68% 77% 19 17 2 89% 77% 83%

Apache Ivy 17 15 10 5 67% 59% 63% 13 10 3 77% 59% 67%

Apache Log4j 3 3 1 2 34% 34% 34% 9 2 7 22% 67% 34%

Apache Lucene 26 31 19 12 61% 73% 67% 45 23 22 51% 88% 65%

JEdit 10 8 6 2 75% 60% 67% 3 3 0 100% 30% 46%

JHotDraw 8 11 7 4 64% 88% 74% 9 6 3 67% 75% 71%

JVLT 1 2 1 1 50% 100% 67% 2 1 1 50% 100% 67%

Apache Karaf 14 18 13 5 72% 93% 81% 16 12 4 75% 86% 80%

Apache Nutch 11 9 6 3 67% 55% 60% 13 7 6 54% 64% 58%

Apache Pig 7 9 5 4 56% 71% 63% 7 4 3 57% 57% 57%

Apache Qpid 15 17 13 4 76% 87% 81% 15 11 4 73% 73% 73%

Apache Struts 19 17 12 5 71% 63% 67% 22 13 9 59% 68% 63%

Apache Xerces 8 9 6 3 67% 75% 71% 8 5 3 63% 63% 63%

Overall 228 230 159 71 69% 70% 69% 269 163 106 61% 71% 66%

initial set. Once the filtering has been applied, TACO’s precision increases to 70%,

while its recall decreases to 69%. Moreover, it is interesting to note that the two

approaches are highly complementary, as reported in Table 9.3. In fact, 46% of the

correct smell instances have been detected by both approaches, while our textual

technique identifies 26% of instances missed by JDeodorant. On the other side, the

structural tool is able to capture 28% of correct Feature Envy instances missed by

TACO. An example of an instance correctly captured by TACO is represented by

the method readSchema of the class IndexSchema of Apache Lucene. Here

the method, implementing the functionality able to read the schema of a database,

has a concept more related to the class ZkIndexSchemaReader with respect to

the class it is actually in. On the other hand, JDeodorant is the only technique able

to correctly identify the smell affecting the method isRebuildRequired of the
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Table 9.5: Blob - TACO accuracy compared to DECOR.

Project

#Actual TACO DECOR

Smells Det. TP FP Prec. Rec. F-M Det. TP FP Prec. Rec. F-M

ArgoUML 30 42 28 14 67% 93% 77% 23 15 8 65% 50% 57%

Apache Ant 31 37 25 12 68% 81% 74% 21 17 4 81% 55% 65%

aTunes 9 11 7 4 64% 78% 70% 4 3 1 75% 34% 46%

Apache Cassandra 22 26 20 6 77% 91% 83% 5 4 1 80% 18% 30%

Eclipse Core 43 56 35 21 63% 81% 71% 64 31 33 48% 72% 52%

FreeMind 11 12 9 3 75% 82% 78% 7 7 0 100% 64% 78%

HSQLDB 23 24 18 6 75% 78% 77% 32 18 14 57% 78% 66%

Apache Hive 27 24 17 7 71% 63% 67% 18 13 5 72% 48% 58%

Apache Ivy 10 10 8 2 80% 80% 80% 3 3 0 100% 30% 46%

Apache Log4j 5 6 4 2 67% 80% 73% 3 1 2 34% 20% 25%

Apache Lucene 27 30 22 8 74% 81% 77% 27 18 9 67% 67% 67%

JEdit 15 13 12 1 92% 80% 86% 13 11 2 85% 74% 79%

JHotDraw 13 14 11 3 79% 85% 81% 11 8 3 73% 62% 67%

JVLT 3 2 1 1 50% 34% 40% 1 1 0 100% 34% 50%

Apache Karaf 5 4 3 1 75% 60% 67% 4 3 1 75% 60% 67%

Apache Nutch 2 2 1 1 50% 50% 50% 2 1 1 50% 50% 50%

Apache Pig 7 6 4 2 67% 57% 62% 12 5 7 42% 71% 53%

Apache Qpid 29 34 27 7 79% 93% 86% 15 12 3 80% 41% 55%

Apache Struts 13 17 11 6 65% 85% 73% 6 4 2 67% 31% 42%

Apache Xerces 16 20 14 6 70% 88% 78% 22 13 9 59% 81% 68%

Overall 338 388 276 112 71% 82% 76% 292 187 105 64% 55% 59%

class WebsphereDeploymentTool, present in Apache Ant project. In this case,

TACO is not able to identify the smell since it is characterized by a high number

of dependencies with the envied class, even if the textual content of the method is

more related to the actual class.

Blob Discussion

As for the detection of Blobs, TACO is able to achieve, overall, a precision of 71%

and a recall of 82% (F-measure=76%), while DECOR is able to achieve a precision

of 64% and a recall of 55% (F-measure=59%). Specifically, on average, TACO is

16% more accurate in detecting this type of smell. The only exception is repre-

sented by the jVLT project. In this case, DECOR is able to identify one out of three
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Blob instances present in the system without any false positive (precision=100%,

recall=34%), while TACO outputs two candidates, of which one is a false posi-

tive (precision=50%, recall=34%). In particular, TACO fails in the suggestion of

the class Utils of the package net.sourceforge.jvlt.utils. Even if the

methods of this class are not cohesive, since the class implements several utility

methods used by other classes, it can not be considered a Blob since it does not

centralize the behavior of a portion of the system. On the contrary, an example

of Blob correctly detected by TACO can be found in the class AudioFile of the

aTunes project. This class has the goal to map an entity, but actually it implements

several methods for the management of such entities and also for the management

of users’ playlists. DECOR can not detect this smell since the class does not seem

to be a controller class6. Looking at the complementarity in Table 9.3, we observed

that the textual approach is able to detect a consistent number of correct instances

missed by DECOR. Indeed, TACO is able to capture 42% of classes affected by Blob

missed by DECOR, while DECOR detects 16% of instances missed by TACO. No-

ticeably, 42% of correct instances are identified by both the approaches. This result

highlights how the use of textual analysis can be particularly suitable for detecting

the Blob code smell.

Promiscuous Package Discussion

Over the set composed of 163 Promiscuous Package instances, TACO achieves 67%

of precision and 74% of recall (F-measure=71%), outperforming on 19 systems

out of 20 the alternative structural-based technique. This result clearly indicates

how the use of textual information is beneficial in order to identify packages com-

posed of classes implementing different responsibilities. The only exception re-

gards the aTunes project, in which the two techniques obtain the same accuracy

(F-Measure=40%). Specifically, in this system there are 3 promiscuous packages,

and the two approaches are able to correctly detect only one instance each. TACO

detects as promiscuous the atunes.kernel.actions package, that is charac-
6DECOR identify a controller class if its name contains a suffix in a set

{Process, Control, Command, Manage, Drive, System}
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Table 9.6: Promiscuous Package - TACO accuracy compared to the approach pro-

posed in [196].

Project

#Actual TACO DECOR

Smells Det. TP FP Prec. Rec. F-M Det. TP FP Prec. Rec. F-M

ArgoUML 13 18 11 7 61 85 71 13 8 5 62 62 62

Apache Ant 10 9 8 1 89 80 84 6 4 2 67 40 50

aTunes 3 2 1 1 50 33 40 2 1 1 50 33 40

Apache Cassandra 7 8 5 3 63 71 67 5 3 2 60 43 50

Eclipse Core 9 10 7 3 70 78 74 6 3 3 50 33 40

Freemind 6 7 4 3 57 67 62 3 2 1 67 33 44

HSQLDB 7 7 5 2 71 71 71 5 3 2 60 43 50

Apache Hive 7 6 5 1 83 71 77 7 4 3 57 57 57

Apache Ivy 4 2 2 0 100 50 67 2 1 1 50 25 33

Apache Log4j 5 3 3 0 100 60 75 2 2 0 100 40 57

Apache Lucene 26 34 24 10 71 92 80 27 19 8 70 73 72

JEdit 7 8 5 3 63 71 67 5 2 3 40 29 33

JHotdraw 5 6 3 3 50 60 55 3 1 2 33 20 25

JVLT 3 4 1 3 25 33 29 2 0 2 00 00 0

Apache Karaf 5 5 3 2 60 60 60 4 2 2 50 40 44

Apache Nutch 4 5 2 3 40 50 44 4 1 3 25 25 25

Apache Pig 10 9 8 1 89 80 84 6 5 1 83 50 63

Apache Qpid 15 17 11 6 65 73 69 12 7 5 58 47 52

Apache Struts 13 16 11 5 69 85 76 11 7 4 64 54 58

Apache Xerces 4 4 2 2 50 50 50 3 1 2 33 25 29

Overall 163 180 121 59 67% 74% 71% 128 76 52 59% 47% 52%

terized by 133 classes implementing actions related to the management of (i) the

buttons present in the UI, (ii) the options for saving audio files in local, and (iii)

the synchronization of the playlists. In this case, the structural technique can not

detect the instance because of the dependencies among the classes, due to the fact

that all the classes inherit the AbstractAction class and belong to the menu

visible by the end user.

On the other hand, TACO fails in the detection of the atunes.gui.views

package, that is composed of 26 classes related to different aspects of the manage-

ment of the dialogs of the application. The structural technique correctly detects

the smell since it is able to cluster the classes into sub-packages, while TACO can
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not detect it because of the consistent vocabulary used in the classes. Looking

at Table 9.3, we can see that the textual technique captures the most part of the

instances missed by the alternative approach (i.e., 51%), while the structural tech-

nique detect 21% of instances missed by TACO. Finally, it is interesting to note

how only the 28% of instances are detected by both the techniques.

Table 9.7: Misplaced Class - TACO accuracy compared to the approach proposed

by Atkinson and King [76].

Project

#Actual TACO DECOR

Smells Det. TP FP Prec. Rec. F-M Det. TP FP Prec. Rec. F-M

ArgoUML - - - - - - - - - - - -

Apache Ant 4 4 3 1 75 75 75 4 2 2 50 50 50

aTunes - - - - - - - - - - - -

Apache Cassandra - - - - - - - - - - - -

Eclipse Core 11 11 8 3 73 73 73 9 7 2 78 64 70

Freemind - - - - - - - - - - - -

HSQLDB 1 2 0 2 0 0 0 3 1 2 33 10 50

Apache Hive 2 4 2 2 50 10 67 5 1 4 20 50 29

Apache Ivy 2 4 2 2 50 10 67 6 1 5 17 50 25

Apache Log4j - - - - - - - - - - - -

Apache Lucene 11 11 9 2 82 82 82 7 5 2 71 45 56

JEdit - - - - - - - - - - - -

JHotdraw 4 3 2 1 67 50 57 3 2 1 67 50 57

JVLT - - - - - - - - - - - -

Apache Karaf 1 4 1 3 25 10 40 3 0 3 0 0 0

Apache Nutch - - - - - - - - - - - -

Apache Pig 21 21 19 2 90 90 90 4 3 1 75 14 24

Apache Qpid 2 3 2 1 67 10 80 2 0 2 0 0 0

Apache Struts - - - - - - - - - - - -

Apache Xerces 4 4 3 1 75 75 75 3 2 1 67 50 57

Overall 63 71 51 20 72% 81% 76% 49 24 25 49% 38% 43%

Misplaced Class Discussion

We found 63 instances of Misplaced Class over 11 of the 20 systems analyzed. Over-

all, the textual technique reaches 72% of precision and 81% of recall (F-measure=76%),
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while the alternative approach has a precision of 49%, with a recall of 38% (F-

measure=43%). This result clearly shows the usefulness of textual analysis for de-

tecting classes not properly located. An example smell detected by TACO can be

found in the Apache Lucene project, where the class InstantiatedIndex of

the package lucene.store has different dependencies with the current package,

but has topics more related to the package lucene.index. In contrast, the ap-

proach proposed in [76] is the only one able to detect, in the Apache Pig project,

the PhyPlanSetter class of the package mapReduceLayer as misplaced. Here,

the class has a vocabulary more similar to the package where it is actually in, but it

should clearly be placed in the physicalLayer package. When considering the

overlap metrics (Table 9.3), we confirm the actual superiority of TACO with re-

spect the structural technique. Indeed, we found that 67% of correctly detected

instances are only found by TACO, 21% of instances are detected by both ap-

proaches, while a smaller percentage (i.e., 12%) of smells are only identified by

the alternative structural approach.

9.4 Threats to Validity

This section describes the threats that can affect the validity of our empirical study.

Construct Validity. Threats to construct validity are mainly due to the definition

of the oracle for the studied software projects. In the context of our work, we rely on

the oracles publicly available in [60]. However, we cannot exclude that the oracle

we used misses some smells, or else identified some false positives. Another threat

is the use of comments during the detection process, since not all the systems have

them. To deal with this, we re-run the case study by just considering identifiers.

Results are in line with the ones obtained in Section 9.3.2. The interested reader

can find detailed results in our online appendix [205]. Finally, another threat is

related to our re-implementation of both SEGMENT [203] and DECOR [20], which

was needed because of lack of tools. However, our re-implementations use the

exact algorithms defined by Wang et al. [203] and by Moha et al. [20], and have
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Figure 9.2: F-measure achieved with different cut-off points. Dashed red line cor-

responds to our cut-off point.

already been used in earlier work [52, 47, 206].

Internal Validity. An important factor that might affect the results achieved when

evaluating the accuracy of TACO is represented by the cut-off point we used to

detect code smells. To have higher reliability of our choice, we also investigated

the effects of different cut-off points on the performance of TACO when detect-

ing smells for all the systems considered in our study. For example, Figure 9.2

plots the F-measure scores achieved by TACO when using different cut-off points

when detecting Long Method on the aTunes project. We can notice that the best

F-measure is achieved when using as cut-off point the median of the probability

distribution, i.e., the dashed red line in Figure 9.2. Similar results are also obtained

for the other projects and smell types, as reported in our online appendix [205].

Another threat to internal validity is represented by the settings used for the

IR process. During the pre-processing, we filtered the textual corpus by using

well known standard procedures: stop word list, stemmer and the tf-idf weighting

schema, and identifiers splitting [55]. For LSI, we choose the number of concepts

(k) using the heuristics proposed by Kuhn et al. [200].

External Validity. We demonstrated the feasibility of our approach focusing our

attention on smells of different nature and of different levels of granularity. How-
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ever, there might be other smells that can be potentially detected using TACO and

not considered in this chapter [8, 61]. Such an investigation is part of our future

agenda. Another threat can be related to the number of subject systems used in our

empirical evaluation. To show the generalizability of our results, we conducted an

empirical study involving 20 Java open source systems having different size and

different domains. It could be worthwhile to replicate the evaluation on other

projects written in different programming languages.

9.5 Conclusion

In this chapter, we devised TACO (Textual Analysis for Code smell detectiOn),

an approach purely based on textual analysis able to detect instances of five dif-

ferent code smell types having different nature and different granularity, i.e., Long

Method, Feature Envy, Blob, Promiscuous Package, and Misplaced Class. It does so by

analyzing the properly decomposed textual blocks composing a code component,

in order to apply IR methods and measuring the probability that a component is

affected by a given smell.

To evaluate the accuracy of the proposed detector, we ran TACO on 20 open

source software systems in order to (i) evaluate its accuracy in detecting code

smells, and (ii) compare its performances with state-of-the-art structural-based

approaches. The results of the study demonstrated that TACO exhibits a preci-

sion ranging between 67% and 72%, and a recall that ranges between 70% and

85%, often outperforming alternative structural-based detectors. Moreover, we

found some complementarity between textual and structural information, sug-

gesting that their combination could be beneficial to obtain better detection accu-

racy.

For the aforementioned reason, our future research agenda includes the def-

inition of a combined technique, as well as the evaluation of the usefulness of

the proposed textual approach in the detection of other code smell types. Also,

we plan to define a smell prioritization approach using the smelliness probabil-

ity computed by TACO. Finally, we will further investigate the characteristics of
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textual smells in order to compare their impact on change- and fault-proneness

with the results achieved in previous studies considering smells detected using

structural techniques.
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Chapter 10

The Scent of a Smell: an Extensive

Comparison between Textual and

Structural Smells

10.1 Introduction

Technical debt is a metaphor introduced by Cunningham in 1993 to indicate “not

quite right code which we postpone making it right” [4]. The metaphor tries to ex-

plain the compromise between delivering the most appropriate but still immature

product, in the shortest time possible [4, 130, 131, 132, 133]. Bad code smells (“code

smells” or “smells”), i.e., symptoms of poor design and implementation choices

applied by programmers during the development of a software project [8], repre-

sent an important factor contributing to technical debt [131].

The research community spent a lot of effort studying the extent to which code

smells tend to remain in a software project for long periods of time [12, 13, 14,

15], as well as their negative impact on non-functional properties of source code,

such as program comprehension [18], change- and defect-proneness [16, 17], and,

more generally, maintainability [9, 117, 118]. As a consequence, several tools and

techniques have been proposed to help developers in detecting code smells and to

suggest refactoring opportunities [20, 21, 25, 27, 30, 52]. So far, almost all detectors
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try to capture code smell instances using structural properties of source code as

the main source of information.

Nevertheless, recent studies have indicated that code smells detected by exist-

ing tools are generally ignored (and thus not refactored) by the developers [14, 40,

49]. A possible reason is that developers do not perceive the smells identified by

the tool as actual design problems or, if they do, they are not able to practically

work on such code smells. In other words, there is misalignment between what is

considered smelly by the tool and what is actually refactorable by developers. In

this chapter, we conjecture that rather than structural properties, developers consider

textual information more close to the way they reason and act on code smell instances, and

find them more useful during refactoring.

To this aim, we conducted two different studies aimed at investigating how

developers act on instances of the same type of smell but detected using structural

tools versus an approach based purely on textual information, named TACO (see

Chapter 9). First, we performed a software repository mining study considering

301 releases and 183,514 commits from 20 open source projects in order (i) to verify

whether textually and structurally detected code smells are treated and refactored

differently, and (ii) to analyze their likelihood of being resolved with regards to

different types of code changes, e.g., refactoring operations. Since our quantitative

study cannot explain relation and causation between types of smell and mainte-

nance activities, we perform a qualitative study with 10 industrial developers and

5 software quality experts in order to understand (i) how code smells identified

using different sources of information are perceived, and (ii) whether textually or

structurally detected smells are easier to refactor. In both the two studies, we fo-

cused on five code smell types, i.e., Blob, Feature Envy, and Long Method, Misplaced

Class, and Promiscuous Package.

The results of our study indicate that textually detected code smells are per-

ceived as harmful as the structural ones, even though they do not exceed any typ-

ical software metrics’ value (e.g., lines of code in a method). Moreover, source

code with inconsistent vocabulary is easier to comprehend and, therefore, eas-

ier to maintain and refactor. We also observed that developers are more able to
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Table 10.1: The Code Smells considered in our Study

Name Description

Blob A large class implementing different responsibilities.

Feature Envy A method is more interested in a class other than the one it actually is in.

Long Method A method that implements more than one function.

Misplaced Class A class that should be placed in another package.

Promiscuous Package A package composed of unrelated classes.

recognize design flaws affecting textual smells. As a consequence, developers’ ac-

tivities tend to decrease the intensity of textual code smells, positively impacting

their likelihood of being resolved. Vice versa, structural smells typically increase

in intensity over time, indicating that maintenance operations are not aimed at

removing them or do not limit them.

10.2 Textual and Structural Code Smell Detection

Starting from the definition of design defects proposed in [8, 61, 62, 63], researchers

have devised tools and techniques to detect code smells in software systems. Most

of them are based on the analysis of the properties extractable from the source

code (e.g., method calls) by means of a combination of structural metrics [20, 21,

22, 23, 24, 26, 65, 72, 103], while in recent years the use of alternative sources of

information (i.e., historical and textual analysis) have been explored [52, 53], to-

gether with methodologies based on machine learning [36, 37] and search-based

algorithms [32, 33, 34, 35].

Besides code smell detectors, even refactoring techniques may be adopted to

identify design flaws in the source code [25, 27, 29, 31, 73, 66]. Rather than identify

code smells directly, such approaches recommend refactoring operations to apply

in order to remove a design flaw. Also in this case, the primary source of informa-

tion exploited is the structural one [25, 73, 66], while few works have explored a

combination of structural and conceptual analysis [27, 31, 29].

Both code smell detectors and refactoring techniques defined so far mostly fo-
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cused their attention on the design flaws object of this study, i.e., Blob, Long Method,

Feature Envy, Misplaced Class, and Promiscuous Package. Table 10.1 briefly describes

each of them. The interest in these smells is dictated by the fact that they have

been widely recognized as important threats to the maintainability of a software

system [9, 10, 16, 17, 18, 19], but also because they are considered by the developers

as harmful [50]. In our study, we consider a smell textual when it is detected using

a textual-based detection technique, i.e., it is characterized by high textual scatter-

ing among the elements it contains (e.g., textual content of methods or statements).

On the other hand, a smell is structural if it is detected by a detector purely based

on the analysis of structural properties of source code (e.g., number of attributes,

size or number of dependencies with other classes). The following subsections

describe the detection rules applied in the context of our empirical study.

10.3 Textual Smells Detection

As for the detection of textual code smells, we use TACO (Textual Analysis for

Code smell deTection) [53], an approach able to identify code smells using a three-

step process, i.e., (i) textual content extraction, (ii) application of IR normalization

process, and (iii) application of specific heuristics in order to detect code smells re-

lated to promiscuous responsibilities (e.g., Blob). In the first step TACO extracts all

textual elements needed for the textual analysis process of a software project, i.e.,

source code identifiers and comments. Then, the approach applies a standard IR

normalization process [55] aimed at (i) separating composed identifiers, (ii) reduc-

ing to lower case letters the extracted words, (iii) removing special characters, pro-

gramming keywords and common English stop words, and (iv) stemming words

to their original roots via Porter’s stemmer [197]. Thus, the code smell detection

process relies on Latent Semantic Indexing (LSI) [204], an extension of the Vector

Space Model (VSM) [55], that models code components as vectors of terms occur-

ring in a given software system. LSI uses Singular Value Decomposition (SVD)

[199] to cluster code components according to the relationships among words

and among code components (co-occurrences). The original vectors (code com-
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ponents) are then projected into a reduced k space of concepts to limit the effect of

textual noise. To this aim, TACO uses the well-known heuristic proposed by Kuhn

et al. [200], i.e., k = (m⇥ n)0.2 where m denotes the vocabulary size and n denotes

the number of documents (code components). Finally, code smells are detected by

measuring the lack of textual similarity among their constituent code components

(e.g., vectors) using the cosine distance. For example, a Blob is detected (i) by com-

puting the average similarity among the methods of the class, which correspond

to the textual cohesion of a class defined by Marcus and Poshyvanyk [45]; and (ii)

by reversing the textual cohesion in order to obtaine a probability PB that a class

is affected by the Blob code smell.

Using the same steps, TACO is able to detect Long Method instances. Indeed,

it firstly extract the code blocks composing a method by using the approach by

Wang et al. [203], and then TACO computes the probability a method is smelly

considering the lack of cohesion among the code blocks composing it. Instances of

Promiscuous Package are instead detected by exploiting the lack of cohesion among

the classes composing a package.

As for the Feature Envy code smell, for each method M belonging to the class

CO, the approach retrieves the more similar class (Cclosest), and then the probability

that the method is smelly is given by the difference between the textual similarities

of M and the two classes Cclosest and CO. Similarly, TACO identifies Misplaced Class

instances by retrieving the package Pclosest (i.e., the more similar package) for a

class C contained in the package PO, and then computing the probability that this

class is misplaced by measuring the difference between the textual similarities of

C and the two packages Pclosest and PO.

For all types of code smells, TACO outputs a value ranging in [0; 1], which

indicates the probability of a code component to be affected by a specific code

smell.
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10.4 Structural Smells Detection

Regarding the detection of structural smells, we rely on DECOR, the structural

approach proposed by Moha et al. [20] for detecting Blob and Long Method smells.

In particular, this approach uses a set of rules, called rule cards1, describing the

characteristics a code component should have in order to be classified as smelly.

In practice, rules are set of conditions based on code metrics (e.g., line of codes)

with respect to fixed thresholds. For example, a Blob is detected when a class has

an LCOM5 (Lack of Cohesion Of Methods) [64] higher than 20, a number of meth-

ods and attributes higher than 20, and it has a one-to-many association with data

classes. As for Long Method, DECOR classifies a method as smelly if it has more

than 100 lines of code. For detecting Feature Envy instances, we used JDeodorant

[25]. Given a method m, JDeodorant forms a set of candidate target classes where m

could be moved to, based on its structural relationships. Then, the candidate target

classes are sorted in descending order according to the number of dependencies

m has to each of them. If the movement of m in the first ranked class satisfies a

set of behavior preserving preconditions (e.g., the target class does not contain a

method with the same signature as m) then m is marked as a Feature Envy [25].

For the Misplaced Class detection, we re-implemented the approach proposed

by Atkinson and King [76], which traverse the abstract syntax tree of a class C in

order to determine, for each feature, the set T of classes referencing them. Then,

the classes in T are sorted based on their belonging package in order to extract

the number of dependencies each package P 2 T has with the class C. If C has

more dependencies with a different package with respect to the one it is actually

in, an instance of Misplaced Class is detected. Our re-implementation relies on the

publicly available Java Development Tools APIs2.

Finally, to detect Promiscuous Package instances, we re-implemented the ap-

proach by Girvan et al. [196]. It is based on a clustering algorithm that groups

together classes of a package based on the dependencies among them. In the re-

1http://www.ptidej.net/research/designsmells/
2http://www.eclipse.org/jdt/
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implementation, we exploited the X-Means algorithm [207], an extension of the

traditional K-Means [208] where the parameter X (i.e., the number of clusters the

algorithm must form) is automatically configured using a heuristic based on the

Bayesian Information Criterion [207]. If the algorithm finds more than one cluster,

it means that the classes contained in the package under analysis contain unre-

lated responsibilities and, therefore, an instance of the Promiscuous Package smell

is detected.

10.5 Study I: The Evolution of Textual and Structural

Code Smells

Table 10.2: Characteristics of the Software Projects in Our Dataset

System #Releases #Commits Classes Methods KLOCs

ArgoUML 16 19,961 777-1,415 6,618-10,450 147-249

Apache Ant 22 13,054 83-813 769-8,540 20-204

aTunes 31 6,276 141-655 1,175-5,109 20-106

Apache Cassandra 13 20,026 305-586 1,857-5,730 70-111

Eclipse Core 29 21,874 744-1,181 9,006-18,234 167-441

FreeMind 16 722 25-509 341-4,499 4-103

HSQLDB 17 5,545 54-444 876-8,808 26-260

Apache Hive 8 8,106 407-1,115 3,725-9,572 64-204

Apache Ivy 11 601 278-349 2,816-3,775 43-58

Apache Log4j 30 2,644 309-349 188-3,775 58-59

Apache Lucene 6 24,387 1,762-2,246 13,487-17,021 333-466

JEdit 29 24,340 228-520 1,073-5,411 39-166

JHotDraw 16 1,121 159-679 1,473-6,687 18-135

JVLT 15 623 164-221 1,358-1,714 18-29

Apache Karaf 5 5,384 247-470 1,371-2,678 30-56

Apache Nutch 7 2,126 183-259 1,131-1,937 33-51

Apache Pig 8 2,857 258-922 1,755-7,619 34-184

Apache Qpid 5 14,099 966-922 9,048-9,777 89-193

Apache Struts 7 4,297 619-1,002 4,059-7,506 69-152

Apache Xerces 16 5,471 162-736 1,790-7,342 62-201

Overall 301 183,514 25-2,246 188-17,021 4-466

In this study we empirically investigate how developers deal with textually

and structurally detected code smells by applying software repository mining

techniques.
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10.5.1 Empirical Study Definition and Design

The goal of the empirical study is to evaluate the impact of different sources of in-

formation on developers’ notion of code smells. Our conjecture is that code smells

characterized by an inconsistent vocabulary are easier to perceive and/or easier to

remove for developers when compared to code smells characterized by structural

design flaws, such as high number of dependencies or large size, since conceptual

aspects of source code can provide direct insight that a developer can use to under-

stand and work on code components affected by design problems. The context of

the study consists of the five code smells presented in the previous Section. More-

over, we conduct our analyses on twenty open source software projects. Table 10.2

reports the characteristics of the analyzed systems, namely the number of pub-

lic releases, and their size in terms of number of commits, classes, methods, and

KLOC. Among the analyzed projects, we have twelve projects belonging to the

Apache ecosystem3, and eight open source projects from elsewhere. Note that our

choice of the subject systems is not random, but instigated by our aim to analyze

projects belonging to different ecosystems, having different size and scope.

Our investigation aims at answering the following research questions:

• RQ1: Are textually or structurally detected code smells more likely to be resolved?

• RQ2: Do structural or textual smells evolve differently with regard to different types

of changes (Bug fixing, Enhancement, New feature, Refactoring)?

To answer RQ1, we first manually detect the releases (both major and minor

ones) of the software projects in our dataset, identifying 301 of them spread across

the 20 subject systems. Then, our CHANGEHISTORYMINER tool analyzes each re-

lease R of a software project pi to detect code components (i.e., methods or classes)

affected by one of the considered code smells. Specifically, our tool mines each

release of pi, checks out the corresponding version of the source code, and runs

the textual and structural detection rules presented in Section 10.2.

3http://www.apache.org/ verified October 2016
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To monitor the evolution of code smells, a simple truth value representing the

presence or absence of a design flaw is not enough because we might not evaluate

how the severity of structurally and textually detected code smells varies (decreas-

es/increases) over the releases of the projects in our dataset. Hence, once a code

smell is detected we monitor its evolution in terms of intensity, i.e., in terms of

variation of the degree of severity of a code smell.

Computing the intensity is easy for TACO, since it outputs a value 2 [0; 1] in-

dicating the probability that a code component is affected by a code smell. In-

stead, for structural smells we need to modify the detection approach. In par-

ticular, DECOR classifies a code component as smelly if and only if a set of con-

ditions (rules) are satisfied, where each condition has the form if metrici �
thresholdi. Therefore, the higher the distance between the actual code metric

(metrici) and the fixed threshold value (thresholdi), the higher the intensity of

the flaw. Thus, if a class is detected as Blob by DECOR, we measure its intensity

as follows: (i) we computed the differences between its actual values of software

metrics (e.g., LCOM5, number of methods, etc.) with respect to the corresponding

thresholds reported in the rule card [20]; (ii) we normalized the obtained difference

scores in [0; 1] (iii) we measure the final intensity as the mean of those normalized

scores.

As Long Methods are detected by only looking at the LOC (lines of code), the

intensity is measured as the normalized difference between the LOC in a method

and its threshold in the rule card, which is 100.

JDeodorant marks a method m as Feature Envy if and only if it has more struc-

tural dependencies with another class C⇤ with respect to the number of depen-

dencies m has with the original class C (and if all preconditions are preserved).

Therefore, the intensity is given by the normalized difference of the number of de-

pendencies with C⇤ (new class) and the number of dependencies with C (original

class).

The same strategy can be applied to measure the intensity of Misplaced Class

instances. Indeed, as the technique by Atkinson and King [76] identifies this smell

by looking at the difference between the dependencies a class C has toward a
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Table 10.3: Tags assigned to commits involving smells.

Tag Description

Bug fixing The commit aimed at fixing a bug

Enhancement The commit aimed at implementing an enhancement in the system

New feature The commit aimed at implementing a new feature in the system

Refactoring The commit aimed at performing refactoring operations

package P ⇤ and the dependencies C has with the original package P , the intensity

is given by the normalized difference between them.

Finally, we measure the intensity of Promiscuous Package smell by applying a

min-max normalization on the number of clusters of classes found by the approach

for a package P . In this way, the higher the number of clusters detected the higher

the proneness of the package to be promiscuous.

From this monitoring, we obtained two distributions for each type of code

smells: one distribution related to the variation of intensity for textual smells

(�text) over the different releases and a second one regarding the variation of inten-

sity for structural smells (�struct) over the same releases. Negative values for �text

(or �struct) indicate that the intensity of textual (or structural) smells decreases

over time, while positive values indicate that the intensity increases over time. In

order to verify whether the differences (if any) between �text and �struct are statis-

tically significant, we used the non-parametric Wilcoxon Rank Sum test [142] with

⇢-value = 0.05. We also estimated the magnitude of the observed differences using

Cliff’s Delta (or d), a non-parametric effect size measure [143] for ordinal data. We

follow the guidelines in [143] to interpret the effect size values: small for d < 0.33

(positive as well as negative values), medium for 0.33  d < 0.474 and large for

d � 0.474.

As for RQ2, we are interested in understanding whether particular types of

changes made by developers have a higher impact on the increase/decrease of

the intensity of code smells. To this aim, we conducted a fine-grained analysis, in-

vestigating all the commits available in the repositories of the involved projects
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(overall, we mined 183,514 commits) in order to understand what type of action the

developer was doing when modifying smelly classes. Given a repository ri, our mining

tool ChangeHistoryMiner mines the entire change history of ri, and for each

commit involving a code smell runs the mixed technique proposed by Tufano et

al. [47] in order to detect the types of changes shown in Table 10.3, i.e., Bug Fixing,

Enhancement, New Feature, and Refactoring. To this aim, we download the issues for

all 20 software projects from their BUGZILLA or JIRA issue trackers. Then, we check

if a commit involving a textual or structural code smell is actually related to any

collected issues. To link issues to commits, the approach by Tufano et al. comple-

ments two distinct approaches: the first one is based on regular expressions [144],

which match the issue ID in the commit note, while the second one is ReLink, the

approach proposed by Wu et al. [145], which considers several constraints, i.e., (i)

the existence of a match between the committer and the contributor who created

the issue in the issue tracking system, (ii) the time interval between the commit

and the last comment posted by the same contributor in the issue tracker is less

than seven days, and (iii) the cosine similarity between the commit note and the

last comment referred above, computed using the Vector Space Model (VSM) [55],

is greater than 0.7. When it was possible to find a link between a commit and an is-

sue, and the issue has a type included in the catalogue of tags shown in Table 10.3,

then the commit is automatically classified. In the other cases, we assign the tags

using a semi-automatic process. Specifically, we use a keyword-based approach

for detecting a commit’s goal similar to the one presented by Fischer et al. [144],

and then we manually validate the tags assigned by analyzing (i) the commit mes-

sage and (ii) the unix diff between the commit under analysis and its predecessor.

Overall, we tagged 27,769 commits modifying instances of textually and struc-

turally detected code smells. For 18,276 of them, we found the tag automatically,

while the remaining 9,493 were manually assigned4. Once we obtained the tagged

commits, we investigated how the different types of code changes (independent

variables) impact the variation of intensity of textual and structural code smell (de-

pendent variable). In particular, for each object project and for each kind of code

4The thesis’ author was responsible of this task.
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smell we applied logistic regression models [162] using the following equation:

⇡(BF,E,NF,R) =
eC0+C1·BF+C2·E+C3·NF+C4·R

1 + eC0+C1·BF+C2·E +C3·NF+C4·R
(10.1)

where the independent variables are the number of Bug Fixing (BF), Enhancement

(E), New Feature (NF) and Refactoring (R) operations applied by developers during

the time period between two subsequent releases; the (dichotomous) dependent

variable is whether the intensity increases/decreases between two subsequent ver-

sions; and Ci are the coefficients of the logistic regression model. Then, for each

model we analyze (i) whether each independent variable is significantly correlated

with the dependent variable as estimated by the Spearman rank correlation coef-

ficient (we consider a significance level of ↵ = 5%), and (ii) we quantify such a

correlation using the Odds Ratio (OR) [185] which, for a logistic regression model,

is given by eCi . Odd ratios indicate the increase in likelihood of a code smell inten-

sity increase/decrease as a consequence of a one-unit increase of the independent

variable, e.g., number of bug fixing (BF). For example, if we found that Refactoring

has an OR of 1.10 with textual Blobs, this means that each one-unit increase of the

Refactoring made on a textual Blob mirrors a 10% higher chance for the Blob of

being involved in a decrease of its intensity.

Overall, the data extraction to answer RQ1 and RQ2 took five weeks on 4 Linux

machines having dual-core 3.4 GHz CPU (2 cores) and 4 Gb of RAM.

10.5.2 Analysis of the Results

Table 10.4 reports the mean and the standard deviation scores of the variation of

intensity for textual (�text) and structural (�struct) code smells, collected for Blob,

Feature Envy, Long Method, Misplaced Class, and Promiscuous Package instances. The

results clearly indicate that textual smells are treated differently than structural

ones: in most cases the intensity of textual smells tends to decrease over time, i.e.,

the �text values are negative; vice versa, the intensity of structural smells tends to

increase over time, as indicated by the positive �struct scores. For example, blobs in

JVLT detected by structural tools have an average �struct=0.86, i.e., their structural
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Table 10.4: Mean and Standard Deviations of �text and �struct of our dataset. De-

creasing variations are reported in bold face. TS = Textual Smells; SS = Structural

Smells.

Project

Blob Feature Envy Long Method Misplaced Class Promiscuous Package

TS SS TS SS TS SS TS SS TS SS

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

ArgoUML -0.08 ±0.23 0.13 ±0.33 -0.03 ±0.20 0.10 ±0.26 -0.03 ±0.17 0.11 ±0.22 - - - - -0.12 ±0.25 0.38 ±0.24

Apache Ant -0.11 ±0.27 0.18 ±0.47 -0.05 ±0.22 0.11 ±0.43 -0.04 ±0.20 0.09 ±0.38 -0.05 ±0.12 0.04 ±0.39 -0.07 ±0.13 0.37 ±0.24

aTunes -0.08 ±0.24 0.11 ±0.25 -0.01 ±0.27 0.10 ±0.41 -0.06 ±0.28 0.08 ±0.42 - - - - -0.01 ±0.11 0.49 ±0.33

Apache Cassandra -0.08 ±0.25 0.18 ±0.35 -0.06 ±0.26 0.21 ±0.19 -0.06 ±0.26 0.23 ±0.24 - - - - -0.15 ±0.12 0.33 ±0.25

Eclipse Core -0.08 ±0.23 0.12 ±0.31 -0.03 ±0.21 0.18 ±0.37 -0.03 ±0.23 0.15 ±0.35 -0.04 ±0.14 0.05 ±0.14 -0.08 ±0.16 0.44 ±0.31

FreeMind -0.07 ±0.21 0.23 ±0.41 0.01 ±0.01 0.15 ±0.36 0.01 ±0.06 0.16 ±0.32 - - - - -0.05 ±0.07 0.14 ±0.09

HSQLDB -0.07 ±0.21 0.15 ±0.27 -0.03 ±0.13 0.08 ±0.14 -0.04 ±0.12 0.14 ±0.11 -0.03 ±0.30 0.11 ±0.15 -0.09 ±0.22 0.38 ±0.14

Apache Hive -0.04 ±0.16 0.14 ±0.45 0.04 ±0.14 0.12 ±0.38 -0.02 ±0.17 0.13 ±0.43 -0.01 ±0.10 0.03 ±0.11 -0.03 ±0.27 0.24 ±0.36

Apache Ivy -0.10 ±0.23 0.19 ±0.32 -0.03 ±0.14 0.10 ±0.37 -0.01 ±0.18 0.10 ±0.36 -0.04 ±0.25 0.11 ±0.09 -0.02 ±0.14 0.27 ±0.42

Apache Log4j -0.05 ±0.16 0.18 ±0.13 0.01 ±0.08 0.25 ±0.12 -0.01 ±0.13 0.21 ±0.11 - - - - 0.02 ±0.11 0.32 ±0.22

Apache Lucene -0.11 ±0.24 0.11 ±0.32 -0.02 ±0.07 0.12 ±0.25 -0.01 ±0.07 0.11 ±0.23 0.01 ±0.05 0.14 ±0.06 -0.03 ±0.07 0.38 ±0.14

JEdit -0.11 ±0.25 0.12 ±0.15 -0.04 ±0.23 0.23 ±0.35 -0.02 ±0.25 0.23 ±0.35 - - - - -0.16 ±0.05 0.26 ±0.11

JHotDraw -0.09 ±0.23 0.10 ±0.27 -0.04 ±0.23 0.13 ±0.05 -0.04 ±0.22 0.12 ±0.19 -0.07 ±0.10 0.01 ±0.04 -0.08 ±0.12 0.11 ±0.24

JVLT -0.21 ±0.27 0.86 ±0.03 -0.10 ±0.41 0.68 ±0.07 -0.10 ±0.41 0.76 ±0.20 - - - - -0.04 ±0.17 0.08 ±0.04

Apache Karaf -0.06 ±0.16 0.29 ±0.12 -0.02 ±0.15 0.16 ±0.35 -0.02 ±0.16 0.16 ±0.38 -0.07 ±0.34 0.05 ±0.12 -0.15 ±0.19 0.21 ±0.34

Apache Nutch -0.09 ±0.24 0.12 ±0.05 -0.01 ±0.02 0.05 ±0.32 -0.02 ±0.08 0.05 ±0.31 - - - - 0.01 ±0.27 0.23 ±0.09

Apache Pig -0.02 ±0.30 0.09 ±0.36 -0.06 ±0.17 0.08 ±0.31 -0.01 ±0.12 0.11 ±0.24 -0.17 ±0.07 0.02 ±0.13 -0.24 ±0.25 0.12 ±0.04

Apache Qpid -0.09 ±0.23 0.06 ±0.41 -0.08 ±0.29 0.11 ±0.26 -0.01 ±0.15 0.10 ±0.22 -0.23 ±0.17 0.25 ±0.11 0.02 ±0.13 0.04 ±0.11

Apache Struts -0.04 ±0.14 0.10 ±0.18 -0.01 ±0.03 0.11 ±0.27 -0.02 ±0.11 0.10 ±0.25 - - - - -0.18 ±0.33 0.25 ±0.12

Apache Xerces -0.06 ±0.19 0.16 ±0.31 -0.02 ±0.12 0.09 ±0.31 -0.03 ±0.12 0.10 ±0.28 -0.08 ±0.16 0.28 ±0.29 -0.03 ±0.20 0.29 ±0.21

Overall -0.09 ±0.24 0.14 ±0.35 -0.03 ±0.20 0.15 ±0.35 -0.04 ±0.19 0.14 ±0.34 -0.06 ±0.18 0.17 ±0.22 -0.15 ±0.23 0.37 ±0.26

metrics (e.g., LCOM5) increase (worsen) by 86% on average at each new release.

Instead, for the same project, the intensity of textual Blobs decreases (improves)

21% on average. An interesting example can be found in Apache Ant, when an-

alyzing the evolution of the class Property of the org.apache.tools.ant.-

taskdefs package. The class is responsible for managing the Ant build prop-

erties. In the first versions of the project—from version 1.2 to version 1.5.4—the

class was affected by a Blob code smell (it had a level of textual intensity equal

to 0.83) since it implemented seven different ways to set such properties. Dur-

ing its evolution, the intensity has been reduced by developers through the ap-

plication of different types of operations, such as code overriding (version 1.6)

and refactorings (version 1.6.1), leading to a decrease of the complexity of the

class, and consequently to the removal of the Blob smell. Currently, the class is

responsible to set the execution environment of the build process by getting the

desired properties using a string. A similar discussion can be made for the other

studied code smells. Code elements affected by textual design flaws are seem-
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Table 10.5: Comparison between �text and �struct for Blob, Feature Envy and Long

Method. We use S, M, and L to indicate small, medium and large Cliff’s d effect

sizes respectively. Significant p-values are reported in bold face

Textual vs. Structural

Blob Feature Envy Long Method Misplaced Class Promiscuous Package

Project p-value d M p-value d M p-value d M p-value d M p-value d M

ArgoUML <0.01 -0.76 L <0.01 -0.85 L <0.01 -0.88 L - - - <0.01 -0.51 L

Apache Ant <0.01 -0.66 L <0.01 -0.67 L <0.01 -0.71 L <0.01 -0.79 L <0.01 -0.62 L

aTunes <0.01 -0.84 L <0.01 -0.52 L <0.01 -0.59 L - - - <0.01 -0.57 L

Apache Cassandra <0.01 -0.76 L <0.01 -0.89 L <0.01 -0.91 L - - - <0.01 -0.60 L

Eclipse Core <0.01 -0.83 L <0.01 -0.77 L <0.01 -0.74 L <0.01 -0.76 L <0.01 -0.78 L

FreeMind <0.01 -0.78 L <0.01 -0.83 L <0.01 -0.79 L - - - <0.01 -0.72 L

HSQLDB <0.01 -0.83 L <0.01 -0.72 L <0.01 -0.84 L <0.01 -0.92 L <0.01 -0.84 L

Apache Hive <0.01 -0.65 L <0.01 -0.70 L <0.01 -0.68 L <0.01 -0.89 L <0.01 -0.98 L

Apache Ivy <0.01 -0.89 L <0.01 -0.78 L <0.01 -0.63 L <0.01 -0.73 L <0.01 -0.66 L

Apache Log4j <0.01 -0.76 L <0.01 -0.82 L <0.01 -0.78 L - - - <0.01 -0.79 L

Apache Lucene <0.01 -0.83 L <0.01 -0.89 L <0.01 -0.91 L <0.01 -0.68 L <0.01 -0.71 L

JEdit <0.01 -0.95 L <0.01 -0.79 L <0.01 -0.76 L - - - <0.01 -0.63 L

JHotDraw <0.01 -0.80 L <0.01 -0.92 L <0.01 -0.89 L <0.01 -0.72 L <0.01 -0.61 L

JVLT <0.01 -1.00 L <0.01 -1.00 L <0.01 -0.98 L - - - <0.01 -0.70 L

Apache Karaf <0.01 -1.00 L <0.01 -0.87 L <0.01 -0.79 L <0.01 -0.72 L <0.01 -0.68 L

Apache Nutch <0.01 -1.00 L <0.01 -0.81 L <0.01 -0.81 L - - - <0.01 -0.97 L

Apache Pig <0.01 -0.78 L <0.01 -0.90 L <0.01 -0.82 L <0.01 -0.64 L <0.01 -0.71 L

Apache Qpid <0.01 -0.70 L <0.01 -0.84 L <0.01 -0.85 L <0.01 -0.59 L <0.01 -0.65 L

Apache Struts <0.01 -0.94 L <0.01 -0.88 L <0.01 -0.90 L - - - <0.01 -0.79 L

Apache Xerces <0.01 -0.85 L <0.01 -0.81 L <0.01 -0.86 L <0.01 -0.95 L <0.01 -0.82 L

Overall <0.01 -0.78 L <0.01 -0.78 L <0.01 -0.77 L <0.01 -0.74 L <0.01 -0.69 L

ingly more carefully managed by developers. On the other hand, code smells

detected by DECOR tend to have a different evolution. For instance, the evolu-

tion of the method org.hsqldb.JDBCBench.createDatabase of the HSQLDB

project is quite representative. This method should manage the functionality for

creating a new database, but over history its size strongly increased as more sub-

functionalities have been added, resulting in a Long Method. Interesting is the com-

ment left by a developer in the source code of the method at version 1.7.3 of the

project: “Totally incomprehensible! One day or another, we should fix this method...

I don’t know how!”. This comment gives strength to our initial conjecture, namely

that source code characterized by inconsistent vocabulary is easier to perceive and,

therefore, more urgent to maintain.
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Our preliminary findings are also confirmed by the statistical tests, whose re-

sults are reported in Table 10.5. Specifically, for all the studied code smells the

difference between the two distributions �text and �struct is always statistically

significant (⇢-values<0.01), i.e., the variations of intensity for structural and textual

smells are statistically different. It is worth noting that the magnitude of Cliff’s d

measure is always large.

Having observed that textual and structural code smells are treated differently,

we turn our attention to investigating which types of operations are performed by

developers on the two sets of code smells, and to what extent such operations have

an effect on the increase/decrease of their intensity. As for operations having the

effect of increasing the intensity of textually and structurally detected code smells,

we did not find a clear relationship between specific changes and the increase of

intensity. Specifically, when considering textually detected smells, we found that

for 35% of changes implementing new features the intensity tends to increase; 57%

of times an increase is due to enhancement or bug fixing activities. Also for struc-

turally detected smells, we observed that most of the times (91%) changes aimed

at implementing new features, enhancing or fixing bugs in the project tend to in-

crease the smell intensity. Moreover, for both textual and structural smells, we

found that in a small percentage (8% for textual smells, 9% for structural smells)

refactoring operations increase the level of intensity. Even though this result can

appear unexpected, it confirms previous findings demonstrating that, rather than

removing code smells, sometimes refactorings can be the cause of introducing de-

sign flaws [47].

Regarding the operations reducing the level of intensity, Table 10.6 reports the

percentage of the different types of changes, i.e., New Feature (NF), Bug Fixing (BF),

Refactoring (R), and Enhancement (E), applied on the set of textual and structural

code smells in our dataset. Considering the results achieved in previous work

[107, 13, 40, 49], the most unexpected result is the one related to the percentage

of refactoring operations. In fact, even if the number of refactoring operations

performed on code smells remains quite low —confirming that code smells are

poorly refactored— we observed that textual smells are generally more prone to
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Table 10.6: Percentage of Different Types of Changes applied over Textual and

Structural Code Smells. NF = New Feature; BF = Bug Fixing; R = Refactoring; E =

Enhancement

Code Smell
Textual Smells Structural Smells

NF BF R E NF BF R E

Blob 10 32 14 44 10 32 10 48

Feature Envy 12 28 14 46 10 34 8 48

Long Method 8 34 13 45 8 38 6 48

Misplaced Class 15 21 14 50 17 25 5 53

Promiscuous Package 11 33 17 39 9 37 7 47

be subject to these operations (Blob=+4%, Feature Envy=+6%, Long Method=+7%,

Misplaced Class=+9%, Promiscuous Package=+10%). In the following, we provide

detailed results on the types of changes positively influencing the intensity for

each code smell in our study.

Blob. Table 10.7 shows the Odds Ratios of the different types of changes applied

on textual and structural code smells, obtained when building a logistic regres-

sion model for data concerning the decrease of smell intensity. In the following,

we will mainly focus our discussion on statistically significant values. First of all,

we can notice that changes tagged as Refactoring often have higher chance to de-

crease the intensity of textual Blobs (the ORs are higher than 1 in 85% of significant

ORs). Thus, refactorings applied to Blob instances characterized by textual prob-

lems have a higher chance of being effective in the reduction of the smell intensity.

Another unexpected result regards what we found for the category Enhancement:

indeed, also in this case such changes have more chance to be effective in the re-

duction of the complexity of a textual Blob. A possible reason behind this finding

concerns the higher ability of developers to enhance code components affected by

textual smells, due to the lower difficulties they have to understand the problems

affecting the source code. As for structural Blob instances, the results show that Bug

Fixing operations have a higher chance to reduce the smell intensity. This means

that code components having low quality as measured by software metrics are

274



Chapter 10. An Extensive Comparison between Textual and Structural Smells

Table 10.7: OR of different types of changes applied to Blob, Feature Envy, and Long

Method instances when building logistic model. Statistically significant ORs are

reported in bold face.

Project

Blob Feature Envy Long Method

Textual Smell Structural Smell Textual Smell Structural Smell Textual Smell Structural Smell

NF BF R E NF BF R E NF BF R E NF BF R E NF BF R E NF BF R E

ArgoUML 0.78 0.85 1.11 1.50 0.81 1.00 0.87 0.89 0.81 0.97 0.89 1.10 0.80 0.83 0.93 0.95 0.87 1.05 0.99 1.01 0.73 0.89 0.89 0.74

Apache Ant 0.99 1.01 1.00 1.01 0.97 1.01 0.99 1.00 0.88 0.93 0.91 1.02 0.87 0.82 0.81 0.92 0.86 1.01 1.11 1.02 0.69 0.98 0.84 0.89

aTunes 1.01 0.98 1.01 1.14 0.98 1.01 0.95 0.87 0.98 0.89 0.92 1.01 0.87 0.77 0.91 0.96 0.89 1.02 1.10 1.00 0.99 0.97 1.01 0.88

Apache Cassandra 0.99 1.00 1.00 1.00 0.97 1.01 0.99 1.00 0.83 0.87 0.92 1.03 0.87 0.78 0.76 0.93 0.93 0.98 1.01 1.01 0.89 0.92 0.95 0.91

Eclipse Core 0.88 1.01 1.10 1.34 0.99 0.97 1.00 1.02 0.81 0.84 0.97 1.04 0.83 0.92 0.83 0.97 0.98 1.10 1.15 0.97 0.68 1.02 0.98 1.01

FreeMind 0.91 1.02 0.89 1.22 0.92 0.98 0.78 0.88 0.72 0.81 0.94 1.02 0.71 0.82 0.91 0.99 0.86 1.02 0.99 0.87 0.83 0.97 0.94 0.91

HSQLDB 1.01 0.97 1.06 1.18 1.01 0.93 1.00 0.99 0.75 0.81 0.98 1.10 0.72 0.89 0.93 0.84 0.92 0.97 1.02 0.88 0.91 0.97 0.99 0.78

Apache Hive 0.99 1.00 1.01 1.00 0.97 1.01 0.99 1.00 0.87 0.93 0.84 1.11 0.73 0.74 0.81 0.96 0.89 0.97 1.00 0.87 0.79 0.81 0.74 0.89

Apache Ivy 0.99 1.00 1.02 1.00 0.96 0.99 0.99 1.00 0.74 0.73 0.92 1.08 0.86 0.74 0.72 0.83 0.92 0.98 1.01 0.98 0.91 0.86 0.81 0.92

Apache Log4j 0.86 1.02 1.06 1.19 0.94 0.98 1.01 1.01 0.83 0.92 0.97 1.05 0.78 0.70 0.91 0.96 0.91 1.02 1.10 0.82 0.72 0.76 0.93 0.83

Apache Lucene 0.99 1.00 1.20 1.00 0.97 1.01 0.99 1.00 0.81 0.84 0.92 1.04 0.79 0.84 0.81 0.97 0.97 1.14 1.36 1.02 0.89 0.93 1.05 0.82

JEdit 0.88 1.04 1.18 1.24 0.0 0.65 0.18 0.66 0.83 0.98 0.82 1.03 0.85 0.78 0.97 0.98 0.85 1.01 0.99 0.84 0.92 0.78 0.92 0.89

JHotDraw 0.67 0.88 1.02 1.09 0.54 0.41 0.88 0.64 0.84 0.87 0.93 0.99 0.84 0.78 0.84 0.91 0.92 1.21 0.97 0.88 0.93 0.99 0.96 0.88

JVLT 0.51 0.75 1.01 0.97 0.87 0.99 1.01 0.77 0.95 0.83 0.99 1.06 0.91 0.84 0.93 0.97 0.88 1.02 1.02 0.87 1.00 0.99 0.99 0.97

Apache Karaf 0.99 1.00 1.00 1.01 0.96 1.00 0.99 1.00 0.86 0.88 0.98 1.11 0.87 0.94 0.82 0.98 0.91 1.01 0.97 0.89 0.96 1.01 0.89 0.79

Apache Nutch 0.99 1.00 1.02 1.00 0.95 0.99 0.93 1.00 0.81 0.78 0.98 1.08 0.89 0.79 0.83 0.93 0.86 0.97 1.03 1.12 0.78 0.85 0.96 0.98

Apache Pig 0.99 1.01 1.12 0.97 0.96 1.01 0.99 1.00 0.88 0.87 0.92 1.07 0.71 0.76 0.77 0.86 0.93 0.99 1.02 1.12 0.87 0.79 0.96 1.02

Apache Qpid 0.99 1.10 1.04 1.00 0.97 0.99 1.00 1.01 0.87 0.82 0.88 1.12 0.72 0.86 0.84 0.91 0.82 1.00 1.01 1.22 0.87 1.02 0.98 0.92

Apache Struts 0.87 1.05 1.15 1.27 0.93 0.97 0.91 0.89 0.87 0.97 1.02 1.17 0.73 0.83 0.98 0.98 0.76 1.01 1.06 1.11 0.87 0.99 0.98 1.02

Apache Xerces 0.92 1.01 1.52 1.23 0.95 0.97 0.91 0.99 0.78 0.92 0.97 1.21 0.86 0.83 0.92 1.02 1.01 1.09 1.05 1.12 0.98 1.01 0.99 1.03

Overall 0.99 1.02 1.23 1.20 0.97 1.01 0.98 0.99 0.81 0.85 0.91 1.14 0.79 0.86 0.91 0.93 0.96 1.05 1.18 1.02 0.88 0.95 0.97 0.97

mainly touched by developers only when a bug fix is required. Looking at these

findings, we can conclude that textual Blob instances are on the one hand more prone to

be refactored and, on the other hand more likely to be resolved by such operations, while the

complexity of structural Blob instances is mainly reduced through bug fixing operations.

This claim is also supported by the analysis of the number of textual and struc-

tural Blob instances actually removed in our dataset (see Table 10.8). Indeed, we

observed that 27% of textual smells in our dataset have been removed over time,

and in 12% of the times they have been removed using refactoring operations. On

the other hand, we can see that the percentage of structural Blob instances removed

over time is much lower (16%), and the percentage of refactorings is 7% lower with

respect to textual blobs.

Feature Envy. The ORs achieved when applying the logistic regression model re-

lating the types of changes to the decrease of smell intensity for Feature Envy are

reported in Table 10.7. In this case, changes classified as New Feature, Bug Fix-
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Table 10.8: Percentage of Removed Textual (TS) and Structural Code (SS) Smell

instances

Code Smell
% TS Removed % SS Removed

Residual
(% due to refact.) (% due to refactor.)

Blob 27 (12) 16 (5) +11 (+7)

Feature Envy 16 (4) 11 (2) +5 (+2)

Long Method 35 (18) 20 (8) +15 (+10)

Misplaced Class 18 (11) 7 (3) +11 (+8)

Promiscuous Package 26 (11) 13 (4) +13 (+7)

ing, and Refactoring in most cases do not reduce the intensity of either textual and

structural Feature Envy instances. Instead, the enhancement operations made on

textually detected Feature Envy smells have, overall, 14% more chance of reducing

the smell intensity. Looking at the results of structurally detected Feature Envy,

none of the analyzed changes seem to lead to an intensity reduction. Moreover,

it seems that textually detected Feature Envy instances differ from structurally de-

tected ones, since other than being removed more frequently (see Table 10.8), the

refactoring operations are slightly more effective (+2%) in the removal of the smell.

Since this smell arises when a method has more in common with another class

with respect to the one it is actually in, such a difference can be explained consid-

ering the way developers perceive different types of coupling. Indeed, as shown

by Bavota et al. [180], conceptual coupling better reflects the mental model of de-

velopers. So, it seems that developers are able to better perceive the symptoms of

a textual Feature Envy, by providing solutions to limit it, or in some cases provide

accurate solutions to remove it.

Long Method. Table 10.7 reports the results achieved when comparing textually

and structurally detected Long Method instances. Regarding textual long methods,

there are several causes which relate with the decrease of their intensity. Overall,

we can see that refactorings have 18% more chance of reducing the complexity

of the smell, while Bug Fixing and Enhancement operations have 5% and 2% more

chance, respectively. These findings highlight how the decrease of the intensity
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Table 10.9: OR of different types of changes applied to Misplaced Class and Promis-

cuous Package instances when building logistic model. Statistically significant ORs

are reported in bold face.

Project

Misplaced Class Promiscuous Package

Textual Smell Structural Smell Textual Smell Structural Smell

NF BF R E NF BF R E NF BF R E NF BF R E

ArgoUML - - - - - - - - 1.02 0.93 1.04 0.99 0.97 0.98 0.88 1.01

Apache Ant 0.81 1.04 1.08 0.91 0.82 1.01 0.79 1.01 0.96 0.80 1.02 0.71 1.02 0.82 0.94 1.01

aTunes - - - - - - - - 0.82 1.01 0.77 0.92 1.01 0.67 0.92 0.81

Apache Cassandra - - - - - - - - 0.72 1.04 1.11 0.77 0.80 1.01 0.99 0.60

Eclipse Core 0.97 1.01 1.18 0.83 0.98 0.88 0.91 1.01 1.01 0.92 1.12 0.84 0.95 1.08 0.81 0.72

FreeMind - - - - - - - - 0.84 1.02 0.97 0.99 0.98 1.01 0.85 0.68

HSQLDB 0.86 0.79 1.17 0.80 0.71 0.66 0.91 1.02 0.51 1.01 1.02 0.81 0.98 1.05 0.95 0.83

Apache Hive 0.91 0.87 1.18 0.98 0.79 0.71 0.92 1.02 0.89 0.99 0.80 0.77 0.92 0.82 0.84 1.02

Apache Ivy 0.86 0.78 0.99 0.92 0.78 0.92 0.87 1.06 0.88 0.61 1.11 0.87 0.91 0.82 0.65 1.03

Apache Log4j - - - - - - - - 0.72 0.69 1.20 0.92 0.55 1.06 0.91 0.83

Apache Lucene 0.81 1.04 1.21 0.72 0.52 0.64 0.89 1.01 1.03 0.98 1.02 0.78 0.56 0.61 0.54 0.89

JEdit - - - - - - - - 0.88 0.99 0.92 0.88 0.79 0.76 0.66 0.93

JHotDraw 0.82 1.01 1.22 0.91 0.88 0.87 0.72 0.84 0.72 0.77 1.05 1.08 0.79 0.82 0.99 0.60

JVLT 0.51 - - - - - - - 0.95 0.73 1.09 0.74 0.69 0.59 0.68 0.99

Apache Karaf 0.81 1.01 0.90 0.82 0.81 0.57 0.82 0.95 0.69 0.72 1.01 0.92 0.74 0.92 0.81 1.04

Apache Nutch - - - - - - - - 0.77 1.02 1.08 0.98 0.96 0.88 0.92 0.81

Apache Pig 1.01 0.81 1.27 0.89 0.52 0.76 0.99 0.92 0.78 0.91 1.21 0.72 0.74 0.72 0.89 0.71

Apache Qpid 0.83 0.88 1.11 0.98 1.01 1.05 0.66 0.82 0.60 0.72 1.20 0.82 0.72 0.61 0.86 0.87

Apache Struts - - - - - - - - 0.81 1.01 1.06 0.62 0.81 0.86 0.99 1.02

Apache Xerces 0.92 0.99 1.09 1.02 0.82 1.01 0.89 1.05 0.99 1.05 1.14 0.74 0.88 1.04 0.89 0.71

Overall 0.89 0.99 1.15 0.92 0.76 0.91 0.94 1.02 0.86 1.01 1.10 0.84 0.93 0.98 0.85 0.98

of textual long methods depends on the activity of the developers. When ana-

lyzing the results for structurally detected long methods, we observed that there

are no specific types of changes that strongly influence the decrease of smell in-

tensity. Thus, looking at these results, also in this case we can affirm that textual

long methods have characteristics which help developers in detecting and, thus,

removing them from the source code. Table 10.8 highlights these differences, since

textually detected Long Method instances are removed in 35% of cases over time

(18% of removals are due to refactoring), while structurally detected long meth-

ods are removed in 20% of the cases (8% of cases due to refactoring activities).
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Misplaced Class. When evaluating the differences between textually and struc-

turally detected instances of this smell (Table 10.9), we can delineate a clear trend

in the results. Indeed, textual Misplaced Class instances undergo a considerable re-

duction of their intensity when refactoring is applied (changes of this type have

15% more chance of reducing the intensity of the smell). The claim is also sup-

ported by the percentage of smell instances removed by developers shown in Ta-

ble 10.8, where we can observe that the smell is removed in 18% of the cases over

time and, more importantly, 11% of removals are due to refactoring. As previ-

ously explained for the Feature Envy smell, the reasons behind this strong result

can be found in the developers’ perception of software coupling [180]. In fact, the

smell arises when a class has responsibilities closer to the ones of another package

with respect to the one it is actually in. Therefore, if developers better compre-

hend the conceptual relationships between classes it is reasonable to assume that

they are more inclined to move classes to better locations. Concerning instances

of the smell found by the structural approach, the situation is different because of

the limited values of the ORs achieved by the considered types of changes. The

higher value is the one found by considering changes of the category Enhance-

ment (+2% more chance of reducing the intensity). This means that developers

actually reduce the intensity of structural misplaced classes only in cases where

an enhancement is needed, rather than limiting the intensity through appropriate

refactoring operations. It is worth noting that the percentage of instances of this

smell removed over time is lower than the one of textual smells (-11% of removals)

and that refactoring is the cause of removal only in 3% of the cases.

Promiscuous Package. The discussion of the results for this smell type is quite

similar to the ones above. Indeed, from Table 10.9 we can observe that in most

cases refactorings are limiting the intensity of textually detected instances (+10%

chance to reduce the severity), while for structural smells there are no specific

types of changes that influence the decrease of smell intensity. This result seems

to highlight the higher ability of developers to deal with promiscuous packages

characterized by scattered concepts rather than by structural symptoms. There-
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fore, also in this case we can affirm that the characteristics of textually detected

instances of this smell help developers in finding adequate solutions to reduce the

intensity of the design flaw. Notably, such instances are removed in 26% of the

cases over the release history of the projects analyzed (+13% with respect to struc-

tural instances), and 11% of the times the reason of the removal is refactoring (+7%

than structural promiscuous packages).

10.5.3 Threats to Validity

Threats to construct validity concern the relationship between theory and obser-

vation, and are mainly related to the measurements we performed in our study.

Specifically, we monitored the evolution of the level of smelliness of textual and

structural code smells by relying on five tools, i.e., TACO, DECOR [20], JDeodor-

ant [25], and the approaches by Girvan et al. [196] and Atkinson and King [76],

empirically validated and providing good performance in code smell detection.

Nevertheless, we are aware that our results can be affected by the presence of false

positives and false negatives. While we re-implemented all the structural-based

techniques but JDeodorant, we followed the exact algorithms defined by the cor-

responding authors. Moreover, to make sure that our implementation was not

biased, we replicated the studies presented in [20, 76, 196], obtaining similar re-

sults. For the commit goal tag assignment to commits involving code smells, we

used methodologies successfully used in previous work [47]. Moreover, we man-

ually validated all the tags assigned to such commits.

Threats to internal validity concern factors that could have influenced our re-

sults. The fact that design flaws are removed may or may not be related to the

types of changes we considered in the study, i.e., other changes could have pro-

duced such effects. Since the findings reported so far allow us to claim correlation

and not causation, in Section 10.6 we corroborate our quantitative results with a

user study where we involve industrial developers and software quality experts,

with the aim of finding a practical explanation of our quantitative results.

Threats to external validity concern the generalization of the results. A specific
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threat to external validity is be related to the number of subject systems used in our

empirical evaluation. To show the generalizability of our results, we conducted an

empirical study involving 20 Java open source systems having different size and

different domains. However, it could be worthwhile to replicate the empirical

study on other projects written in different programming languages.

10.6 Study II: The Perception of Textual and Structural

Code Smells

In the previous section we found evident differences in the way developers treat

textual and structural smells. However, we cannot speculate on the reasons behind

such differences by solely looking at historical data. Indeed, on the one hand it is

possible that developers perceive textual smells more as design problems than

structural smells, while on the other hand it is also possible that this difference

relies on the fact that textual smells are easier to maintain. To better understand

the reasons behind the results achieved in the previous analysis, we conducted a

qualitative study aimed at investigating how developers perceive structural and

textual instances of smells.

10.6.1 Empirical Study Definition and Design

This study reports on a qualitative investigation conducted with (i) professional

developers through a questionnaire, and (ii) software quality experts through semi-

structured interviews, with the goal of investigating their perception of code smells

with respect to different sources of information, i.e., textual and structural. Hence,

we designed this study to answer the following research questions (RQs):

RQ3: Do developers perceive design problems behind textual smells more than

design problems behind structural smells?

RQ4: Do developers find textual smells easier to refactor than structural

smells?
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The context of the study consists of two software projects, i.e., Eclipse 3.6.1 and

Lucene 3.6 that have already been used in Section 10.5. For each of them, we

selected four instances of Blob, Feature Envy, Long Method, Misplaced Class, and

Promiscuous Package adhering to the following process:

1. we computed the level of structural and textual intensity for all packages,

classes, and methods in Eclipse and Lucene;

2. we selected two instances of each code smell type correctly detected by struc-

tural tools but not by TACO;

3. we also selected two other instances of each type of code smell that are cor-

rectly classified by TACO and not by structural tools.

Note that we selected instances classified by the detectors as the ones having

highest intensity (i.e., the selected instances have similar intensity values). More-

over, to avoid possible biases caused by the interaction of more code smells [9, 18],

we selected instances affected by only a single type of code smell. Finally, we also

randomly selected two code elements of different granularity (i.e., a package, a

class, or a method) not affected by any of the code smells considered in our study.

This was done to limit the bias in the study, i.e., avoid that participants always

indicated that the code contained a problem and the problem was a serious one.

To answer our research questions, we invited industrial developers from dif-

ferent application domains having a programming experience ranging between 2

and 7 years and that generally work on Java development. The invitations were

sent via e-mail. We have contacted 60 developers in total, receiving 10 responses.

Each one performed the tasks related to a single software systems.

Participants received the experimental material via the eSurveyPro5 online

platform and, hence, they used their own personal computer with their preferred

IDE to answer the proposed questions. The survey provided (i) a pre-test ques-

tionnaire, (ii) detailed instructions to perform the experiment, and (iii) the source

code of the two projects involved in the study, i.e., Eclipse and Lucene. During
5http://www.esurveyspro.com
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the initial step, participants were asked to sign a statement of consent and fill in

a pre-test questionnaire in which we collected information about their program-

ming experience and background on code smells. Afterwards, each participant

was required to inspect a total of twelve code elements related to one of the two

projects in our study, namely five pairs of instances affected by either structural

or textual code smells (i.e., Blob, Feature Envy, Long Method, Misplaced Class, and

Promiscuous Package) plus a pair of code elements not affected by design flaws.

We balanced the 10 participants so that five participants analyzed code smell

instances for Eclipse, while the other five participants focused on Lucene.

The experiment was composed of six consecutive sessions with two tasks each.

During each session, participants performed two tasks related to the same type of

code smell but detected by different tools: one task involving a code smell detected

by TACO and a second task related to the same type of code smell but detected

by structural-based tools. In each task, participants were asked (i) to analyze the

target code component (either a package, a class or a method), (ii) to fill in a post-

task questionnaire indicating whether the code component is affected by a design

flaw or not, and (iii) to suggest (if a design flaw is detected) possible refactoring

operations aimed at removing the smell. Moreover, participants were also asked

to evaluate the proneness of the code element analyzed to be involved in a design

flaw as well as the severity of different source code properties (e.g., size, complex-

ity, number of dependencies, etc.) using a Likert scale ranging from 1 to indicate

a very low risk to 5 to denote very high risk. Participants were also allowed to

browse other classes or methods to better understand the responsibilities of the

code component under analysis and find possible dependencies. Clearly, we did

not reveal the types of code smells, nor whether they were detected by structural

or textual tools.

Participants were instructed to spend no more than 30 minutes for completing

each task and they were allowed to finish earlier if and only if they believed that

all design flaws were found (if any) and the corresponding refactoring operations

were identified. Participants had up to four weeks to complete the survey.

To complement the analysis and receive opinions from people having a solid
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knowledge about source code quality and code smells, in this stage we also re-

cruited five software quality consultants: four from the Software Improvement

Group (SIG) in the Netherlands6, while the remaining one from the Continuous

Quality in Software Engineering (CQSE) in Germany7. Both companies

carry out software quality assessments for their customers. All participants have

an average industrial experience of 4 years, an average programming experience

of 9 years (one of them 20 years). This experiment has been conducted in the

headquarters of the SIG company when we interviewed the consultants from SIG,

while the quality expert from CQSE has been interviewed via Skype.

The consultants were asked to fill-in the same questionnaire provided to the

industrial developers. However, due to time constraints, in this case the quality

experts only answered the questions related to a subset of code smells, i.e., Blob,

Feature Envy, and Long Method. Also in this case, we distributed the experimental

material in order to have a balanced number of answers between the considered

software systems. For this reason, three experts answered questions related to

Eclipse, the other two worked on code elements from Lucene.

At the end of the experiment, the quality experts were also required to par-

ticipate in an open discussion session of 30 minutes to reflect on the tasks per-

formed and to answer questions that we used to collect feedback for qualitative

analysis. In particular, two of the authors8 first asked them to walk through the

classes in order to explain the responsibilities they implemented; then, we asked

them to explain if and how they have identified a design problem in the source

code (e.g., which characteristic of the source code allowed them to recognize a de-

sign flaw). The discussion session was conducted by the first two authors of the

corresponding paper. The total duration of the experiment was 2 hours and 30

minutes, including the time needed to complete the experimental sessions, to fill

in the questionnaires and participate in the discussion.

The data collected by the post-task questionnaires are used to answer RQ3 and

6https://www.sig.eu/en/
7https://www.cqse.eu/en/
8The thesis’ author was equally involved in this task.
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RQ4. Specifically, we address RQ3 by analyzing the design flaws identified by

each participant for the code components; we compared their classification to the

classification made by the textual and structural tools (i.e., Blob, Feature Envy, Long

Method, Misplaced Class, and Promiscuous Package). Moreover, we also compare the

distributions of the Likert values assigned by participants when providing the in-

dication of the proneness of a code element to be involved in a design flaw. In this

way, we measure the perceived levels of risk for the two groups {textual, struc-

tural} of code smells to investigate how participants perceive the strength of code

smells as identified by textual and structural based tools. To verify the statistical

significance of the differences between the two distributions (i.e., risk levels per-

ceived for textual and structural smells) we use the non-parametric Wilcoxon Rank

Sum test with a significance threshold of ⇢� value = 0.05.

For RQ4, we analyze the refactoring operations suggested by participants for

removing the identified code smells. For each different type of code smell there

is, indeed, a specific set of refactoring operations defined suitable to address the

design problems. The refactoring associated with Long Method is Extract Method,

for Feature Envy the corresponding refactoring is Move Method, for Blob an Extract

Class refactoring is advised, for Misplaced Class a Move Class refactoring should be

applied, and for Promiscuous Package the associated solutions is represented by the

Extract Package refactoring [8].

Finally, we provide an overview of the discussion, as well as hints provided by

quality consultants during the open discussion session that followed their experi-

ment.

10.6.2 Analysis of the Results

Before answering the two research questions formulated in the previous section,

we analyze to what extent professional developers perceived the presence of a de-

sign problem in code elements not containing any of the smells considered in our

study. As previously explained, this is a sanity check aimed at verifying whether

participants were negatively biased. As a result, none of the involved developers
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Figure 10.1: Percentage of Textual and Structural Code Smells Perceived and Iden-

tified by Professional Developers.

marked such code elements as affected by code smells. Hence, this result indicates

the absence of a negative bias in the respondents.

Turning to the answers provided by participants when analyzing code ele-

ments affected by a code smell, Figure 10.1 depicts the bar plots reporting the

percentage of code smells perceived (in grey) and identified (in black) by the pro-

fessional developers who participated to the survey. Note that a code component

that is correctly identified is also perceived (the opposite is not true). Moreover,

Table 10.10 reports the percentage of refactoring operations correctly suggested by

participants. Finally, Table 10.11 illustrates the design flaws observed as well as

the refactoring operations suggested by each quality expert involved in the study.

The rows represent participants while the columns depict the type of code smell

(i.e., Blob, Feature Envy and Long Method) and the source of information used for

the detection (i.e., structural or textual).

Looking at the Figure 10.1 we can immediately make two important general

observations: first of all, in most cases textual smells are considered actual prob-

lems by developers, even though they do not exceed any structural metrics’ value.

Secondly, not only the analysis reveals important differences between textual and
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Table 10.10: Percentage of refactoring operations correctly suggested by profes-

sional developers.

Code Smell
Structural Textual

# % # %

Long Method 7 70% 8 80%

Feature Envy 0 0% 2 20%

Blob 4 40% 8 80%

Promiscuous Package 1 10% 9 90%

Misplaced Class 1 10% 9 90%

structural design flaws in the way developers perceive them, but also that textu-

ally detected smells are generally correctly identified (i.e., the description of the

design problem matches the definition provided by Fowler [8]). At the same time,

professional developers are also generally able to provide good suggestions on

how to refactor the code smells that they correctly identify (see Table 10.10). This

is particularly true for textual smells, where the developers almost always indicate

the right refactoring to apply (for all the smells but Feature Envy more than 80% of

participants described well the refactoring aimed at removing the design flaw).

This trend is confirmed when considering the answers provided by software qual-

ity consultants (see Table 10.11). In this case, we can observe that in all the cases

the quality experts perceived design flaws in the proposed code components.

Blob. Blob instances characterized by textual problems are always perceived and

correctly classified by the participants. On the other hand, only half of the struc-

turally detected instances are recognized by developers, even if the problem has

always been perceived. While this result is in line with previous findings demon-

strating that complex or long code is more easily detectable by developers [50], the

different nature of the smells lead us to think that the textual properties of source

code help developers in better understanding the actual flaws.

As for the quality consultants, structural blobs are correctly identified by par-
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Table 10.11: Results obtained from Study II. Labels marked with (*) indicate that

the design flaws identified by participants match the classification provided by

textual or structural tools

Structural Textual

Blob Feature Envy Long Method Blob Feature Envy Long MethodParticipant

Flaws Refactoring Flaws Refactoring Flaws Refactoring Flaws Refactoring Flaws Refactoring Flaws Refactoring

Expert1 Blob* Extr. Class* High Complex. Long Method* Blob* Extr. Class* Feature Envy* Move Method* Long Method* Extr. Method*

Long Param. List Long Param. List High Complex.

High Complex.

Expert2 Code Duplic. Clone Reun. High Complex. Rename Long Method* Extr. Method* Blob* Extr. Class* High Complex. Rename Long Method* Extr. Method*

Bad Identifiers High Complex

Expert3 Blob* Extr. Class* Long Method Extr. Method Long Method* Extr. Method* Blob* Extr. Class* Long Method Extr. Method Long Method* Extr. Method*

Bad Identifiers Feature Envy Move Method

Redundant Code

Expert4 Complex Class Long Method Extr. Method Long Method* Introd. Polym. Blob* Extr. Class* Feature Envy* Move Method* Long Method* Extr. Method*

Extr. Class Bad Identifiers

Expert5 Blob* Extr. Class* Long Method Extr. Method Long Method* Extr. Method* Blob* Extr. Class* Long Method Extr. Method Long Method* Extr. Method*

Bad Identifiers Rename

ticipants in only three out of five cases. Note that in these cases participants also

correctly indicate the refactoring operation (i.e., Extract Class) for removing the

smell. In the remaining two classes, they describe symptoms referable to other

code smells, such as Complex Class [61] and Duplicate Code [8]. Moreover, partici-

pants have not been able to identify an appropriate refactoring to remove these de-

sign flaws. During the open discussion, the quality experts were invited to think

aloud [209] on the design problems affecting the analyzed code components. In

this session, participants re-elaborated their analysis, correctly detecting the pre-

viously missed Blob instances. They also explained that the main reason of the

misclassification is the extreme complexity of the (structurally detected) code compo-

nents that does not allow the correct identification of the design flaws affecting them. For

textual blobs, the discussion is different. Here we observed a complete agreement

with the experts’ perception: all classes detected as blobs by TACO are also iden-

tified as actual Blob instances by the participants. At the same time, it is worth

observing that participants also identified the correct refactoring operation aimed

at removing the smell.

The open discussion session confirms our conjecture, i.e., the textual compo-

nent of the source code actually help developers in understanding the design prob-

lems affecting a class.
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Long Method. When considering the Long Method smell, the discussion is quite

similar. Indeed, here we found that almost all the industrial developers perceived

a problem, still confirming previous findings in the field [50]. However, there are

two details to further analyze. In the first place, unlike the structurally detected

ones all the long methods detected by TACO and perceived by developers have

also been correctly identified. On the other hand, there was a specific case in which

a textual Long Method instance has been marked as not affected by design flaw. It is

the ASTParser.createASTs method of the Eclipse project, which is responsible

for the analysis of the source code classes of a Java project and the subsequent

creation of the Abstract Syntax Tree (AST) for all of them. Even if the method does

not have an excessive length (i.e., 68 lines of code), it should be considered as a

design problem since it manages all the operations needed to build the AST of a

class (i.e., reading, parsing, and AST building). However, one of the professional

developers involved in the study did not perceive this code smell as such.

On the other hand, the quality experts perceived and correctly identified all in-

stances of long methods detected by either approach. However, Table 10.11 high-

lights evident differences between the refactoring operations suggested by par-

ticipants to remove structural and textual smells. Indeed, while for structurally

detected code smells the correct refactoring (i.e., Extract Method) has been iden-

tified in only three out of five cases, for textual smell participants always indi-

cate the Extract Method refactoring as ideal solution for removing the identified

smells. For instance, when indicating the possible refactoring for the long method

TieredMergePolicy.findMerges of the Apache Lucene project, a quality

consultant answered that “parts of the method are separated by comments; at which

points usually an extract method refactoring should be applied; then the names of the

new methods can replace the comments”. This example is quite representative since

the quality expert not only identified the correct refactoring to use, but also gave

us hints on how the refactoring may be applied practically (i.e., by splitting the

method being driven by the comments that separate the different portions of code

to extract).
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Feature Envy. For the Feature Envy we obtain different results as compared to the

two type of code smell discussed above. While the problem is generally perceived

by professional developers, none of them was able to characterize the symptoms

behind the structural instances of this smell. Conversely, textual instances are per-

ceived more (90% vs 80%) and in some cases (40%) participants were able to de-

scribe the problem well. As for the refactoring operations suggested, only two

developers who identified the problem correctly suggest the application of a Move

Method refactoring. For instance, let us consider the case of the getFieldQuery

method, contained in the QueryParser class of the Lucene system, affected by

Feature Envy because it should be placed in the PhraseQuery class to which it

is more closely related. When analyzing it, developer #6 claimed that “the method

seems to be more related to the class PhraseQuery, even if there are not so many dependen-

cies between the two classes”.

The observations that we collect from surveying the quality experts are in line

with those reported above. Indeed, in the majority of the cases the consultants did

not classify this type of code smell correctly, even if they perceived that the subject

code components actually had some design problems. Also in this case, the result

is in line with previous research [50]. However, it is worth noting that the method

getMatchRuleString from the class BasicSearchEngine (Eclipse), and the

method explain from the class of Apache Lucene DisjunctionMatchQuery

have been correctly classified as Feature Envy instances in agreement with the de-

tection made by TACO (textual tool), and, at the same time, correct refactoring

solutions have been suggested (Move Method refactoring). On the one hand, the

higher ability of developers to detect textual Feature Envy instances is a likely con-

sequence of the fact that conceptual coupling is more easily perceived than struc-

tural coupling [180]. On the other hand, hints provided by participants in the open

discussion can allow us to draw a conclusion on why developers often do not iden-

tify this type of smell. Indeed, they reported that “dependency on other classes is the

less important point”, indeed, “as long as a method is short and well documented (e.g.,

with proper identifiers), there is no real need to move it to a different class”.
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Misplaced Class and Promiscuous Package. The importance of textual aspects

of source code for the practical usefulness of code smell detectors is even more

evident when considering Misplaced Class and Promiscuous Package smells. Indeed,

in these cases the structurally detected instances are almost never perceived and

identified, while the results achieved for textual instances are exactly the oppo-

site (see Figure 10.1). At the same time, it is worth observing that the higher the

granularity of the code smell, the lower the ability of the developers in perceiving

structurally detected code smells. A possible reason behind this result is related

to the need of developers of having higher level information to build a cognitive

model to comprehend larger parts of source code [210, 211]. In this sense, the

textual component can give a strong contribution to comprehend the problems

affecting a higher-level code component such as a package.

General observations. In general, we observe two different trends for the type of

design flaws (Table 10.11) detected by quality experts depending on whether code

components are affected by structural and textual smells. While for structurally

detected code smells (i.e., by DECOR or JDeodorant) the experts generally identi-

fied only one design flaw per code component (often missing the actual problem

affecting the code analyzed), for textual smells participants detected, other than

the main one, also other problems related to textual aspects of source code, such

as the presence of poor identifiers. For example, Expert3 identified three differ-

ent design flaws for the class OperatorExpression extracted from the Eclipse

project: it is a Blob (in agreement with TACO) affected by redundant code and with

meaningless identifiers.

At the end of each task, participants were asked to evaluate the severity of dif-

ferent properties (e.g., size, complexity, number of dependencies, etc.) for the an-

alyzed code using a Likert scale intensity from very-low to very-high. Figure 10.2

compares the scores assigned to the code smells according to whether they were

detected by textual or structural tools. Such an analysis allows us to gain more

insight into the perception of code smells stemming from different sources of in-

formation.
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Figure 10.2: Likert chart for post-task questionnaires, where the same questions

are asked at the end of each task

For most of the cases, we see that the structural instances have been marked as

more severe than textual ones. While developers experience structural smells as

more severe, they are not able to correctly diagnose the problems behind this type

of smells because of their increased complexity. Therefore, we can affirm that tex-

tual properties are useful in the detection phase in order to ease the comprehension

and analysis of a design flaw. At the same time, considering the refactorings that

participants suggested, we see there is the need for tools providing better support

in the refactoring of structural code smells.

When considering properties as code size and number of responsibilities, we

did not find any statistical difference between structural and textual smells. How-

291



10.6. Study II: The Perception of Textual and Structural Code Smells

ever, in the open discussion session, the quality experts observed that “size and

number of responsibilities are quite related to each other” when the goal is to understand

whether a specific code unit is affected by a smell or not. Indeed, they observed

that if a class is too large this is a first symptom for the class to be a potential Blob.

However, they also noted that “raw number of lines is not the end of the story because

developers have to read the code”, build their own mental model and then “figure out

whether the class or the method implements too many responsibilities, which is the main

reason of other issues”. Moreover, the quality experts observed that “the number of

lines in a method and the presence of unrelated parameters are the two aspects to look at”

when identifying code smells at method level, where unrelated parameters de-

note “parameters that are interpreted by developers as unrelated looking at the identifier

names”. Finally, for code smells at the class level they mentioned that “the num-

ber of concepts that can be derived by method names and attributes” is the main source

of information while the raw number of lines is not a good approximation of the

phenomenon. Through this analysis we learnt that the size of a code unit does not

always represent a good measure to identify design flaws, since to better evalu-

ate the presence of spurious responsibilities the analysis of textual components is

needed.

Participants also evaluated the severity of two other dimensions for the code

components analyzed, namely complexity and comprehensibility. From Figure 10.2

we can observe that participants perceived the structural code smells as more com-

plex (80%) with respect to textual smells (47%). The Wilcoxon test reveals that such

difference is marginally significant (⇢=0.057) with a negative medium Cliff’s d effect

size (d=-0.36). Similarly, for comprehensibility we observe that 80% of participants

labeled the structural code smells as difficult to comprehend (high or very high

severity) with respect to 60% of participants for textual smells. Such a difference

is statistically significant with ⇢=0.029 and has a negative small Cliff’s d effect size

(d=-0.275). This result highlights that structural smells are perceived as more dif-

ficult to deal with.

To practically understand the effect of these differences, during the open dis-

cussion we asked the quality consultants to directly compare pairs of code compo-
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nents (e.g., textual vs structural blobs) in order to illustrate possible steps for the

application of a refactoring. All the experts stated that in each pair there was “one

instance much more complex to understand, which makes difficult the derivation of a pre-

cise refactoring operation that should be applied”. For example, Expert1 reported that

“looking at the raw number of decision points”, the two methods addAttributes

from the class ClassFile (structural long method) and set from the class Option

(textual long method) “seem to be equally complicated”, but by looking more carefully

at the code, the method set “is instead well structured because there is a pattern in the

if conditions. For this method it is easier to imagine that potential way to fix the problem is

to write different methods for different if conditions”. While the structural long method

addAttributes from class ClassFile “is very complicated and deciding the refac-

toring operations to apply is not so simple”. As another example, Expert4 reported that

the method explain from class DisjunctionMatchQuery “is quite complicated

despite its length: it contains too many concepts and some parameters are simply passed

to other methods”. It is worth noting that this method contains only 17 lines of code

and it is detected as Feature Envy by TACO (textual tool). The structural Feature

Envy, i.e., method nextChar from HTMLStripCharFilter, is perceived “more

complex to manage because it contains too many responsibilities spread across external

classes; it implements a state machine with no meaningful names to help the comprehen-

sion”. Thus, we can affirm that the higher comprehensibility of textual code smells

seems to help developers in finding appropriate refactoring solutions. The result

is in line with what we found studying the evolution of textual smells, i.e., they

are generally more prone to be refactored, as well as more prone to be subject to

activities aimed at reducing their intensity over time.

10.6.3 Threats to Validity

The main threat related to the relationship between theory and observation (con-

struct validity) is represented by the subjectivity of textual and structural code

smell perception. To limit this bias, we carefully selected the study participants by

recruiting developers having industrial experience as well as a quite long career in
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software development. Moreover, we complement our analysis by involving five

quality consultants having a solid knowledge about software quality and code

smells.

As for the factors potentially influencing our findings (threats to internal va-

lidity), we ensured that participants were not aware of the types of code smells

affecting the provided instances nor the underlying techniques used for detection.

Finally, as for the generalizability of our results (threats to external validity),

possible threats can be related to the set of chosen objects and to the pool of the

participants in the study. Concerning the chosen objects, we are aware that our

study is based on smell instances detected in two Java systems only, and that fur-

ther studies are needed to confirm our results. In this study we had to constrain

our analysis to a limited set of smell instances, because the task to be performed

by each respondent had to be reasonably small (to ensure a decent response rate).

As for the participants, we involved 10 industrial developers. While a replication

of the study aimed at corroborating the results achieved could be worthwhile, the

developers involved have a strong experience in the development. At the same

time, we complement our analyses by involving 5 quality consultants having a

solid knowledge about software quality and code smells.

10.7 Conclusion

In this chapter, we conducted a systematic investigation aimed at analyzing how

developers perceive and act on code smell instances depending on which source

of information is used for the detection, i.e., structural metrics versus textual data.

To this aim, we mined historical data from 301 releases and 183,514 commits of

the 20 open source projects in order to monitor developers’ activities on textual

and structural code smells over time. We also conducted a qualitative study with

industrial developers and software quality consultants to analyze how they per-

ceive and react to code smell instances of different nature. The results of the study

highlight four key findings:
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1. Textually detected code smells are generally perceived by industrial devel-

opers as actual design problem equally dangerous to structural smells, even

if they do not exceed any structural metrics’ thresholds.

2. Textual and structural smells are treated differently: the intensity of the for-

mer tends to decrease over time, while the intensity of latter tends to in-

crease.

3. Textually detected smells are more prone to be resolved through refactoring

operations or enhancement activities.

4. Textual smells are perceived as easier to understand. As a consequence, ac-

curate refactoring operations can be derived more quickly.

Our findings confirm that software metrics are not the unique source of infor-

mation that developers use to evaluate the quality of source code [46, 212, 213].

Moreover, the results achieved represent a call to arms for researchers and prac-

titioners to investigate the human’s perspective for building a new generation of

code smell detectors and refactoring tools. Our future agenda includes, indeed,

the definition of a new set of hybrid techniques that efficiently use both sources of

information to detect code smells.

On the other hand, our results shed light on an important motivation behind

the lack of refactoring activities performed to remove code smells [14, 49, 40], i.e.,

it seems developers are not able to practically work on structurally detected code

smells. Therefore, our results clearly highlight the need of having techniques and

tools able to help developers in refactoring code smells characterized by structural

design flaws, which are difficult to understand for developers.
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Chapter 11

Lessons Learnt and Open Issues

The issues related to the management of code smells have attracted an ever in-

creasing attention by the research community, interested in studying the dynamics

behind code smell evolution as well as of their detection and removal. Although

several steps ahead have been done in recent years, in the context of this thesis we

highlighted three specific limitations of previous research, i.e., (i) absence of em-

pirical evidence about code smell introduction, (ii) the relevance and the impact

of code smells on maintainability was studied through small-scale investigations,

and (iii) existing code smell detectors were inadequate for the detection of many

smells. To overcome the limitations found in the current research, we proposed

a number of empirical investigations and novel approaches for detecting code

smells. We firstly investigated when and why developers introduce code smells in

practice (Chapter 3), by conducting a large-scale empirical study on the evolution

history of 200 systems. The findings sometimes contradicted common winsdom,

showing that (i) code smells are usually introduced during the first commit of an

artifact rather than be the result of several maintenance activities applied on an

artifact, (ii) the code artifacts becoming smelly during the evolution are character-

ized by peculiar metrics’ trends that are different from those of the artifacts that

will not become smelly, (iii) refactoring can be the cause of smell introduction, and

(iv) high workload and release pressure are the main reasons for the introduction

of smells.
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At the same time, we studied the longevity of code smells as well as how de-

velopers generally remove them from the source code (Chapter 3). We found that

code smells have a high survivability and are rarely removed as a direct conse-

quence of refactoring activities. Moreover, we also found that refactoring is often

non-efficient for smell removal (Chapter 6). Then, we conducted a large-scale em-

pirical study on the impact of design flaws on change- and fault-proneness (Chap-

ter 4). In general, we confirmed previous findings on the relationship between

smells and change-proneness. At the same time, we found that smells seem to be

not the direct cause of fault-proneness but rather a co-occurring phenomenon in

some parts of the system that are intrinsically fault-prone for various reasons.

Finally, we studied the developers’ perception of code smells (Chapter 5), find-

ing that most of the design flaws characterized by complex/long code are per-

ceived and correctly identified by developers, while for other smells depend on

their intensity. In the second place, we defined two new approaches for smell

detection, based on the use of alternative sources of information.

The first one, coined HIST (Chapter 7), is able to detect code smells follow-

ing a two-step approach: in particular, the change history of a software system

is extracted in order to collect the fine-grained changes, and then a set of heuris-

tics based on co-change or frequency analysis are adopted to detect instances of

five code smells, i.e., Divergent Change, Shotgun Surgery, Parallel Inheritance, Blob,

and Feature Envy. The evaluation of the approach has been conducted on 20 open-

source systems, where we evaluated (i) the precision and the recall of the approach

achieved when comparing the results of the technique with a manually-built or-

acle, and (ii) the complementarity between HIST and other existing code smell

detectors solely based on structural analysis. The results highlighted that our

historical-based approach achieves a precision between 72% and 86%, and a recall

between 58% and 100%. Moreover, we noticed that often our approach outper-

formed the baseline approaches which was compared to. More importantly, how-

ever, is that the results provided by historical and structural approaches are com-

plementary, i.e., the two types of information can detect different smell instances,

paving the way to a combined approach able to increase the overall precision and
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recall of the single approaches.

Since a tool is useful in practice only if its results are meaningful for developers,

we employed HIST in a second empirical study (Chapter 8), where we compared

the developers’ perception about code smell instances retrieved by both the his-

torical and the structural-based approaches. Interestingly, more than 75% of the

smells identified through HIST were considered as actual design flaws by devel-

opers. In addition, smell instances identified by both HIST and the structural-

based techniques are the ones that perfectly match developers’ perception of de-

sign flaws, indicating once again the need of combined detection approaches.

Besides HIST we also defined TACO, an approach for detecting code smells

using Information Retrieval techniques. Specifically, it is able to identify a set of

code smells characterized by promiscuous responsabilities, i.e., Long Method, Blob,

Promiscuous Package, Feature Envy, and Misplaced Class. In this case, the detec-

tor firstly extracts the source code to analyze in order to normalize it through a

standard IR normalization approach. Then, detection rules based on the textual

similarity between the code elements contained in a class (e.g., methods) or in a

package (e.g., classes) are applied. As done previously, we involved TACO in a

preliminary evaluation where we ran the technique against a manually-produced

oracle referring to 20 open source systems to get hints about its precision and re-

call. At the same time, we compared our textual-based technique with existing

structural-detectors. The results reported a precision ranging between 67% and

72%, while a recall ranging between 70% and 85%. Furthermore, most of the times

our technique outperformed other structural-based techniques, denoting an inter-

esting complementarity in the set of smell instances detected. Such result opens

the road to a further combination between different types of sources of informa-

tion.

Once achieved good results in terms of accuracy, we employed TACO and the

structural-based baselines in two other experiments (Chapter 10). In the first one,

we set up a software repository mining study to analyze how the degree of smelli-

ness of textually or structurally detected smells change in different ways over the

history of a software system. In the second place, we conducted a user study with
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industrial developers and quality experts in order to qualitatively analyze how

they perceive code smells identified using the two different sources of informa-

tion. Both the studies reported similar results: textually detected smells are easier

to perceive, and for this reason they are considered easier to refactor, and actually

refactored more often than smells detected using structural properties.

Last but not at least, we ensure the technological transfer and the replication

of the results by making a number of tools, replication packages, and datasets

publicly available.

11.1 Lessons Learnt

The main lessons learnt from this thesis can be summarizable as follow.

• Lesson 1. Code smells are introduced as the source code of a class is committed

for the first time in the repository. One of main results of this thesis consists

of the understanding of the state-of-the-practice of code smell introduction

and removal. Unlike to what usually thought in the research community, we

learnt that code smells are not introduced because of subsequent activities,

but rather when developers are working on a class for the first time. There-

fore, the code smell detectors defined so far might be somehow biased by the

wrong theories on smell introduction. At the same time, the result highlights

the need of having code quality checkers that better assist developers during

their activities (e.g., smell detectors working at commit-level or incorporated

in the code review process).

• Lesson 2. Code smells are a threat for the maintainability of source code. As re-

ported throughout the empirical studies reported in the thesis, code smells

have a high diffuseness over real applications and contribute to cause main-

tainability issues such as making an affected class more change- and fault-

prone. Thus, code smells are not a theoretical problem, and efficient research

solutions need to be carried out in order to support developers in their daily

activities. Similarly, this result highlights the need for software developers
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to constantly monitor the quality of source code in order to avoid the intro-

duction of technical debt causing high unforeseen costs during the evolution

of systems.

• Lesson 3. Not all the code smells are perceived as actual design problems, but

textual and historical analysis can support their correct diagnosis. In this thesis,

we focused a lot on the developers’ perspective, since we were interested in

understanding the underlying properties of code smells. As a result, we dis-

covered that only a small subset of code smells fit the developers’ perception

of design flaws: as easily imaginable, these are the smells characterized by

long or complex code. At the same time, the correct identification of code

smells that highlight violations to Object-Oriented programming mostly de-

pend on the intensity of the problem. However, an even more important

finding regards the role of textual and historical analysis from the develop-

ers’ side. Indeed, we found that smells detected using HIST and TACO are

better aligned with what developers consider a real problem. This is because

(i) the more a code smell change over time the more a developer can recog-

nize that smell as a recurrent problem [12], (ii) textual issues are closer to the

conceptual understanding of design flaws [54]. Based on such lesson, future

detectors should rely on alternative sources of information in order to out-

put sets of code smells that are close to the developers’ perception of design

problems.

• Lesson 4. Code smells characterized by long and/or complex code are the ones

causing more issues for software maintenance and evolution. Among all the code

smells defined in literature, the ones referring to complex and/or long code

(i.e., Blob, Complex Class, Spaghetti Code) represent the major threat to the

maintainability of software systems. Even more interestingly, the refactoring

operations applied on these smells allow gaining more in terms of ease of

future maintenance (as shown in Chapter 4). Other smells, instead, seem to

be practically poorly relevant since they are neither perceived by developers
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nor they cause serious maintainability issues. Thus, the research commu-

nity should devote further effort in the definition of effective strategies for

the identification and the removal of long and/or complex smells. As for

software developers, this result highlights the need of adopting code quality

checkers able to prevent the introduction and/or the growth of design flaws.

• Lesson 5. Developers rarely remove code smells and, when they do, refactoring is

not the main strategy applied. Even though the harmfulness of code smells, this

thesis also shed lights on a relevant practical issue: in general, developers do

not refactor code smells. On the one hand, this is due to the fact the code

smells are diffucult to understand or not correctly perceived as design flaws

by developers, and as such, developers cannot simply design proper refac-

toring solutions. On the other hand, we found that most of the times code

smells are removed because of collateral activities, such as a major restruc-

turing of a class. At the same time, when studying the properties of textual

smells, we observed that developers can easily find ways to improve the de-

sign of textually detected code smells rather than the one of structural smells.

Therefore, the use of textual information for smell detection is highly recom-

mendable, since it helps developers in correctly diagnose a design flaw.

• Lesson 6. Refactoring may introduce code smells. Even though most of the

smells are introduced when developers are working on the implementa-

tion of new features or when enhancing existing parts of a system, a non-

negligible portion of smells are introduced because of refactoring operations

applied by programmers in order to re-organize the source code. While this

finding was somehow unexpected given the nature of refactoring, it high-

lights the need of tools able to support developers in correctly assess the im-

pact of refactoring operations on source code before their actual application.

At the same time, this result clearly demonstrates how software developers

should actively use automatic refactoring tools during their daily activities.

• Lesson 7. Structural-based code smell detection is not bulletproof, and alternative
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sources of information can complement existing approaches. Another important

finding reported in this thesis regards the role of the analysis of the structural

properties of source code for smell detection. Indeed, while we acknowledge

that existing detectors obtain good performances in terms of precision and

recall, it is also true that many code smells cannot be adeguately detected

using code metrics. Conversely, the approaches proposed in this thesis can

nicely complement structural-based techniques. Indeed, both historical and

textual approaches (i) can achieve better results in term of precision and re-

call than existing approaches, and (ii) are better complied to the developers’

mental model. These findings highlight the need of further studies and tech-

niques able to complement different sources of information.

These lessons will drive future research in the field. Some specific further en-

visioned contributions are described in the subsequent section.

11.2 Open Issues

Despite the effort devoted by the research community and despite the advances

proposed in this thesis, the detection of code smells still propose a number of open

issues and challenges that need to be addressed in the future.

• Open Issue 1. Toward combined code smell detectors. As highlighted in our

work, different techniques capture different smells using different types of

information [52, 53]. Thus, to obtain a technique that significatively im-

proves the current state-of-the-art smell detectors, a combination of differ-

ent sources of information is needed. However, such a combination is not

trivial. For example, during the development of TACO [53], we evaluated

a simple combination between textual and structural information obtained

using AND/OR operators for the detection of the Feature Envy smell: in the

AND case we experienced a strong increase of the precision (i.e., +17% than

TACO, +27% than JDeodorant), accompanied by a strong decreases of the re-

call (-34% than TACO, -31% than JDeodorant). Similarly, in the OR case the
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recall strongly increases (+24% than TACO, +34% than JDeodorant), while

the precision decreases of almost 39% for TACO and 36% for JDeodorant.

A possible envioned way to combine different types of information is the

introduction of a mechanism for local smell detection. Similarly to what de-

signed in other contexts, such as bug prediction [214], the idea would be that

of clustering the classes of a software system in homogeneous groups, and

then applying a different type of code smell detection based on the properties

of the classes in each cluster. For instance, let suppose that two clusters have

different characteristics with respect to the number of changes they experi-

enced in the past. In this case, a historical approach may work properly on

the cluster containing classes changing more while it may have poor perfor-

mances on the other cluster, where a structural-based approach may achieve

better performances.

• Open Issue 2. Improving the quality of recommendations. As recently pointed

out [40, 49], only a small percentage of code smells is actually removed by de-

velopers. In our opinion, the reason behind this data is twofold. First of all,

since the removal of code smells is a time-consuming and error-prone task

[124], it is important that such techniques find relevant suggestions about

which parts of the source code a developer should care about. To this aim, the

research community needs to focus its attention on how to rank code smells

based on their importance for developers and/or the context a developer

is working on. While some attempts in this direction have already carried

out [39, 38], we believe that these aspects need to be still improved in next

years. Secondly, as revealed in our research on how code smells are intro-

duced [47], code components are generally affected by bad smells since their

creation. This means that new recommenders implementing a just-in-time

philosophy would be worthwhile. On the other hand, we found that there

are also several cases in which code smells are introduced as consequence of

several maintenance activities performed on a code artifact. In these cases,

such code components are characterized by peculiar metrics trends, differ-
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ent from those of clean artifacts. This implies the possibility to define a new

generation of recommenders able to predict which classes will become smelly

over time and, therefore, allow a more suitable way to manage code smells.

• Open Issue 3. Improving the usability of code smell detectors. Detection tools

might require the definition of several parameters. Thus, they might be hard

to understand and to work with, making developers more reluctant to use

such tools. In addition, it is necessary to define a good strategy for the visu-

alization and the analysis of candidate smells. This issue is particular impor-

tant since the smells identified by any detection tool need to be validated by

the user. Thus, a good graphic metaphor is required to highlight problems

to the developers eye, allowing her to decide which of the code components

suggested by the tool really represent design problems. The problem of us-

ability is particularly important in new development contexts, such as the

mobile apps development, where apps are developed by both senior and

novice programmers.

• Open Issue 4. Contextualize the research on code smells. The empirical stud-

ies presented in this thesis, as well as most of the previous research in the

field of code smells do not consider the quality practices used by program-

mers during their daily activities. For instance, the systematic adoption of

code reviews [215] or static analysis tools [216] may significantly influence

the quantity of code smells introduced by developers. At the same time, a

deeper analysis of these practices might provide further useful insights about

the motivations which push developers in introducing technical debt in the

source code.

Among the three open issues, the main goal is that to devise combined tech-

niques and prioritization approaches, which would be a direct follow-up of the

work presented in this thesis.

305



11.3. Further Research Directions on Code Smells

11.3 Further Research Directions on Code Smells

While some future challenges are related to the way current code smell detectors

work, other important challenges refer to the usefulness of smell-related informa-

tion in other software engineering research areas. In the following, we delineate

the future research directions and report some preliminary analyses that we al-

ready carried out to face the experienced issues.

11.3.1 Code Smells in Test Code

Testing represents a significant part of the whole software development effort

[217]. When evolving a software system, developers evolve test suites as well by

repairing them when needed and by updating them to sync with the new version

of the system. To ease developers’ burden in writing, organizing, and executing

test suites, nowadays appropriate frameworks (e.g., JUnit [217])—conceived for

unit testing but also used beyond unit testing—are widely adopted.

While in the context of other code artifacts (in the following referred to as “pro-

duction code”) researchers have provided (i) definitions of symptoms of poor de-

sign choices, known as “code smells” [8], for which refactoring activities are de-

sirable, (ii) automated tools to detect them (e.g., [25, 27]), and (iii) evidence of the

impact of code smells on program comprehensibility and maintainability, a little

knowledge is available with regard to a quite related phenomenon occurring in

test suites, i.e., test smells. Test smells—defined by van Deursen et al. [218]—are

caused by poor design choices (similarly to code smells) when developing test

cases: the way test cases are documented or organized into test suites, the way

test cases interact with each other, with the production code and with external re-

sources are all indicators of possible test smells. For instance, Mystery Guest occurs

when a test case is using an external resource, such as a file or a database (thus,

making the test not self-contained), and Assertion Roulette when a test case contains

multiple assertions without properly documenting all of them [218].

Empirical studies have shown that test smells can hinder the understandabil-
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ity and maintainability of test suites [110, 111], and refactoring operations aimed at

removing them have been proposed [218]. At the same time, the research commu-

nity is extremely active in the field of automatic test case generation, where com-

plete test suites are generated automatically using, for instance, random strategies

[219] or search-based algorithms [112, 220].

Nevertheless, it is still not clear how developers perceive test smells and if they

are aware of them at all. Also, it is not known whether test smells are introduced as

such when test suites are created, or if test suites become “smelly” during software

evolution, and whether developers perform any refactoring operations to remove

test smells. Finally, it is unclear the role of test smells in automatically generated

test code.

Such information is of paramount importance for designing smell detection

rules and building automated detection tools to be incorporated in the develop-

ment process, and especially in the continuous integration processes [221], where

automated tools could identify test smells and, because of that, make the build

fail and notify developers about the presence of the test smells. Highlighting test

smells in scenarios where it is known that developers do not want and need to

maintain them—e.g., because there is no better solution—would make automated

smell detection tools usable, avoiding recommendation overload [222] and even

build failures.

In this context, we started studying some aspects related to the phenomenon,

and in particular we focused our attention on (i) the lifecycle of test smells, (ii)

the diffusion of test smells in automatically generated test code, and (iii) the im-

provement of automatic test case generator through the use of quality metrics. A

brief summary of the results achieved as well as future goals is provided in the

following.

The Lifecycle of Test Smells

We conducted a thorough empirical investigation into the perceived importance of

test smells and of their lifespan across software projects’ change histories. Specif-
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ically, we focused our attention on six test smell types from the catalogue by Van

Deursen et al. [218], i.e., Assertion Roulette, Eager Test, General Fixture, Mystery Guest,

and Sensitive Equality.

First, we conducted a survey with 19 developers assessing whether develop-

ers could recognize instances of test smells in software projects. Such a survey

obtained a clear negative result, indicating that, unlike what previously found for

code smells [50], there is basically no awareness about test smells, highlighting the

need for (semi-) automatic support to aid in detecting these design issues.

Thus, we conducted a mining study over the change history of 152 software

projects to gather the deeper knowledge needed to design effective test smells

detectors. In the context of the study, we investigated (i) when test smells are in-

troduced; (ii) how long test smells survive (and whether developers try to remove

them); and (iii) whether test smells are related to the presence of smells in produc-

tion code, and, therefore, there can be synergies in their detection. The achieved

results indicate that (i) test smells mostly appear as the result of bad design choices

made during the creation of the test classes, and not as the result of design quality

degradation over time, (ii) test smells stay in the system for a long time, with a

probability of 80% that a test smell would not be fixed after 1,000 days from its

introduction, and (iii) complex classes (e.g., Blob classes) in the production code

are often tested by smelly test classes, thus, highlighting a relationship existing

between code and test smells.

The results achieved so far represent the main input for our future research

agenda on the topic, mainly focused on designing, developing, and evaluating

a new generation of code quality-checkers, such as just-in-time refactoring tools

able to perform quality checks at commit time or even while the code is written

in the IDE, recommending to the developer how to “stay away” from bad design

practices. Moreover, we will study whether software systems using specific code

quality (e.g., pull request) and testing strategies (e.g., systems testing both at unit

and integration levels) are more aware about test smells than other projects.
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The Diffuseness of Test Smells in Automatically Generated Test Code

We conducted an empirical investigation on the diffuseness of test smells in the

JUnit test classes automatically generated by EVOSUITE [112] on 110 open source

software projects from the SF110 Corpus of Classes [223]. The study aimed at

assessing (i) to what extent test smells are diffused in automatically generated test

classes, (ii) which test smells tend to occur and co-occur more frequently, and (iii)

if there exist a relationship between the presence of test smells and the project

characteristics. Overall, we analyzed the behavior of eight test smells presented in

literature [218].

Results indicate that (i) test smells are largely diffused, i.e., 83% of JUnit classes

are affected by at least one test smell; (ii) the Assertion Roulette test smell is the

most frequent one (contained in 54% of classes), followed by Test Code Duplication

and Eager Test (contained in 33% and 29% of JUnit classes, respectively); (iii) all the

test smells frequently co-occur with Assertion Roulette; (iv) three pairs of smells,

namely Mystery Guest and Resource Optimism, Mystery Guest and Indirect Testing,

and Indirect Testing and Test Code Duplication tend to co-occur quite frequently; and

(v) all the test smells but For Testers Only and Indirect Testing have strong positive

correlations with structural characteristics of a system, such as size and number of

classes in the project.

These lessons will drive future research in the field, which will be focused on

the designing of new algorithms that, on the one hand, try to balance branch cov-

erage criteria with smell-related information and, on the other hand, try to auto-

matically create text fixtures for test cases generated using existing tools.

Putting Code Quality in the Process of Automatic Test Case Generation

Conventional approaches to test case generation mainly focus on code coverage as

a unique goal to achieve, without taking into account other factors that can be rel-

evant for testers. For example, Afshan et al. [224] highlighted that one such factor

is the effort needed to manually check test data input and test results (e.g., asser-

tions) in order to assess whether the software behaves as intended. Therefore, they
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have incorporated language models into the data generation process with the aim

of generating natural language like input strings to improve human readability.

Recently, Daka et al. [225] used a post-processing technique to optimize read-

ability by mutating generated tests leveraging a domain-specific model of unit

test readability based on human judgement. Other non coverage-based criteria

exploited in literature for test case generation include execution time [226, 227],

memory consumption [228], test size [229, 230, 220], and ability to reveal faults [227].

Nevertheless, none of them explicitly consider test code quality metrics as an

objective to reach besides code coverage. Poorly designed tests are known to have

a negative impact on test maintenance, as they are more difficult to adjust when

production code changes [231, 232, 233]. Automated tests first need to be main-

tained when they are generated, since testers need to manually validate each test

case to check the assertions (oracle cost) [224, 234]. In addition, tests also need to

be maintained and eventually updated according to the changes performed in the

production code during later development activities. Therefore, we argued that

achieving easily maintainable tests is a desirable and important goal in test case

generation. The related literature provides a plethora of metrics to detect poorly

designed tests, such as rules for test smells detection [235, 218, 236]. In the context

of our work, we consider two simple, yet critical quality metrics for evaluating test

code maintainability, namely test cohesion and test coupling.

For measuring test cohesion and test coupling we rely on Information Retrieval

(IR) methods, similarly to previous papers for assessing the quality of production

code [45, 237, 238]. Specifically, we define two novel metrics, namely Coupling

Between Test Methods (CBTM) and Lack of Cohesion of a Test Method (LCTM) inspired

by conceptual coupling and conceptual cohesion, which are two well-known metrics

to assess code quality [238]. We choose IR methods since previous studies [45, 237,

238] demonstrated how textual analysis often outperforms structural metrics in its

ability to describe cohesion and coupling phenomena.

To evaluate to what extent automatically generated test cases present design

problems, we conducted a large scale preliminary study on the SF110 dataset [223]

and using EVOSUITE [229] as test case generation tool, which was aimed at evalu-
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ating to what extent automatically generated test cases present design problems.

This analysis revealed that most automatically generated tests suffer from high

coupling with other tests in the same test suite. Moreover, up to 28% of test cases

(test methods in JUnit) suffer from low cohesion.

Given the results of this exploratory analysis, we proposed to incorporate our

quality metrics LCTM and CBTM into the main loop of EVOSUITE to guide the

search toward more cohesive and less coupled tests. For this, we extended the

MOSA algorithm, a many-objective genetic algorithm recently proposed [220], by

incorporating our quality metrics within the selection mechanism. To evaluate

our quality-based variant of MOSA, we conducted a second empirical study on

43 randomly sampled classes from the SF110 dataset, aimed at analyzed three dif-

ferent aspects. First, if the modified MOSA algorithm is able to actually produce

more cohesive and less coupled tests. In the second place, we assessed whether

the quality optimization affect the branch coverage achieved by the test cases. Fi-

nally, we verified the size of the test cases generated, in order to understand if the

quality optimization has also an effect on this phenomenon.

From the results, we firstly observed that the generated test cases are statisti-

cally more cohesive and less coupled. Moreover, the quality-based automatic gen-

eration process actually has a positive impact on branch coverage and test suite

size. Finally, the size of the generated test cases tends to decrease, suggesting that

our process can nicely complement existing post-search minimization strategies.

Our future work includes the evaluation of the impact of our quality-based

algorithm on the effectiveness of test cases, as well as the evaluation of the effects

on other maintainability factors, (e.g., readability). Moreover, we plan to assess

possible gains (if any) from the application of other test code quality metrics, as

well as smell-related information in the automatic test case generation process.

11.3.2 The Role of Smell-related Information in Other SE Tasks

The second future direction is related to the evaluation of the usefulness of smell-

related information in the context of other software engineering tasks. This chal-
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lenge ranges from the already mentioned automatic test case generation to ap-

proaches for traceability link recovery, where some code smells such as Blob, may

hinder the ability of automatic techniques in correctly detecting links between ar-

tifacts.

To preliminary investigate our hyphotheses, we focused our attention on the

role of code smells in bug prediction. Indeed, the impact of code smells on the

bug-proneness of classes has been demostrated in several studies [17, 41, 44], in-

cluding the one presented in Chapter 4. Although these studies showed the poten-

tial importance of code smells in the context of bug prediction, such observations

have been only partially explored by the research community. A prior work by

Taba et al. [239] defined the first bug prediction model that includes code smell

information. In particular, they defined three metrics, coined as antipattern metrics,

based on the history of code smells in files and able to quantify the average num-

ber of antipatterns, the complexity of changes involving antipatterns and their

recurrence length. Then, a bug prediction model exploiting antipattern measures

besides structural metrics was devised and evaluated, showing that the perfor-

mances of bug prediction models can increase up to 12.5% when considering de-

sign flaws.

In our analysis, we conjectured that taking into account the severity of a design

problem affecting a source code element in a bug prediction model can contribute to the

correct classification of the bugginess of such a component. We believe that a mea-

sure of severity of code smells can provide useful insights about the proneness

of classes in being buggy. To verify this conjecture, we exploited the intensity in-

dex defined by Arcelli Fontana et al. [106] to build a bug prediction model that

takes into account the presence and the severity of design problems affecting a

code component. Specifically, we evaluated the predictive power of the intensity

index by adding it in (i) bug prediction model based on structural quality met-

rics [240], and (ii) three prediction models based on process metrics, i.e., the Basic

Code Change Model devised by Hassan [7], the Developer-based Model proposed

by Ostrand et al. [241], and the Developer Changes Based Model defined by Di

Nucci et al. [242]. On a set of 45 systems, we compared the accuracy of the models
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that include the intensity index with the models that do not use any smell-related

information. We also quantified the gain provided by the addition of the intensity

index with respect to the other metrics used in the experimented models. Finally,

we perform an empirical comparison of the performances achieved by our model

and by the model suggested by Taba et al. [239].

The results indicated that the addition of the intensity index as predictor of

buggy components generally increases the performance of structural-based base-

line bug prediction models, but also highlight the importance of considering the

severity of code smells in process metrics-based prediction models, where we ob-

served improvements up to 47% in terms of F-Measure. Moreover, the models

exploiting the intensity index obtain performances up to 16% higher than models

built with the addition of antipattern metrics [239]. However, we observed in-

teresting complementarities between the set of buggy and smelly classes correctly

classified by the two models that pushed us in investigating the possibility of a

combined model including product, process, and smell-related metrics. As a re-

sult, we built a smell-aware combined model that use a mix of product, process,

and smell-related information. It provides a consistent boost in terms of predic-

tion accuracy (i.e., F-Measure) of +13% with respect to the best performing model.

Since our study has focused on global bug prediction, future effort will be de-

voted to the analysis of the contribution of smell-related information in the context

of local-learning bug prediction models [214], as well as in the context of change pre-

diction. Finally, our future research agenda includes the definition of new factors

influencing the performances of bug prediction models.

11.3.3 The Impact of Code Smells on Other Non Functional At-

tributes

Several studies in the literature analyzed the impact of code smells on maintain-

ability [17, 19], however the presence of code smells can negatively impact other

non-functional attributes, such as performances or reliability. Analyzing these re-

lationships might help in devising more usable tools (e.g., a prioritization system
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may rank code smells based on a compromise between quality and performance

improvement), but also in making more prone developers to refactor code smells.

We start facing the problem by studying the impact of code smells on the en-

ergy consumption of mobile applications. In particular, we focus our attention

on energy efficiency since it is becoming a major issue in modern software engi-

neering, as applications performing their activities need to preserve battery life.

Although the problem is mainly concerned with hardware efficiency, in the recent

past researchers successfully demonstrated how even software may be the root

of energy leaks [243]. For instance, Sahin et al. [244] highlighted the existence of

design patterns that negatively impact the power efficiency, as well as the role of

code obfuscation on the phenomenon [245].

Although several important research steps have been made and despite the

ever increasing number of empirical studies aimed at understanding the reasons

behind the presence of energy leaks in the source code, we observed that the

research community has not considered yet the potential impact on energy con-

sumption of a specific set of code smells defined by Reimann et al. [246] for An-

droid mobile applications.

We filled this gap by studying (i) to what extent code smells, affecting source

code methods of mobile applications, influence energy efficiency and (ii) whether

refactoring operations applied to remove them are able to reverse the negative

effects of code smells on energy consumption. In particular, our investigation fo-

cuses on 9 method-level code smells specifically defined for mobile applications

by Reimann et al. [246] in the context of 60 Android apps belonging to the dataset

provided by Choudhary et al. [247]. While Reimann et al. theoretically supposed

the existence of a relationship between these code smells and non-functional at-

tributes of source code (e.g., energy consumption), to the best of our knowledge

we conducted the first study aimed at practically investigating the actual impact

of such code smells on energy consumption and quantifying the extent to which

refactoring code smells is beneficial for improving energy efficiency.

The results of this study provided two main results. In the first place, methods

affected by smells consume up to 385% more with respect to smell-free methods.
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Even if the interaction between them results in lower efficiency, we found four

particular smell types that frequently co-occur and that impact energy consump-

tion more than others, i.e., Leaking Thread, Member Ignoring Method, Slow Loop, and

Internal Getter and Setter. These aspects highlight the importance of investing (i) in

studying more in depth the dynamics behind Android-specific code smells and (ii)

in developing tools that prevent their introduction.

In the second place, refactoring code smells is a key activity to improve en-

ergy efficiency. We found that the energy consumption of refactored methods is

reduced by up to 900% with respect to smelly methods. Therefore, we empiri-

cally demonstrated how small changes applied to remove code smells result in

applications that are much more efficient in terms of energy consumption. Ap-

proaches and tools able to support Mobile developers in automatically refactoring

the source code represent a must for future research in the field.

These are the main points of interest for our future agenda. Indeed, we plan to

futher investigate the possibility to design new code quality-checkers and refac-

toring tools aimed at analyzing, removing, and preventing the introduction of

Android-specific code smells. Moreover, we aim at corroborating our results by

studying the impact of code smells on other non-functional attributes, such as per-

formances.
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