
Congresso Nazionale AICA 2013

Textual Analysis and Software Quality:
Challenges and Opportunities

Gabriele Bavota1, Andrea De Lucia2, Rocco Oliveto3,
Fabio Palomba2, Annibale Panichella2

1Department of Engineering, University of Sannio
Palazzo ex Poste, Via Traiano, 82100 Benevento, Italy

gbavota@unisannio.it
2Department of Management and Information Technology, University of Salerno

Via Giovanni Paolo II, 84084 Fisciano, Italy
adelucia@unisa.it, fabio.palomba.89@gmail.com, apanichella@unisa.it

3Department of Bioscience and Territory, University of Molise
c.da Fonte Lappone, 86090 Pesche (IS), Italy

rocco.oliveto@unimol.it

Abstract. Source code lexicon (identifier names and
comments) has been used – as an alternative or as a
complement to source code structure – to perform various
kinds of analyses (e.g., traceability recovery). All these
successful applications increased in the recent years the
interest in using textual analysis for improving and assessing
the quality of a software system. In particular, textual
analysis could be used to identify refactoring opportunities or
ambiguous identifiers that may increase the program
comprehension burden by creating a mismatch between the
developers' cognitive model and the intended meaning of
the term, thus ultimately increasing the risk of fault
proneness. In addition, when used “on-line” during software
development, textual analysis could guide the programmers
to select better identifiers aiming at improving the quality of
the source code lexicon. In this paper, we overview research
in text analysis for the assessment and the improvement of
software quality and discuss our achievements to date, the
challenges, and the opportunities for the future.

Keywords: Software quality, Textual analysis, Survey.

1. Introduction
During software development and evolution a variety of software artifacts are

created, such as, requirements, bug descriptions, documentation, source code,
test cases, etc. These artifacts have different representations and contain
different types of information, i.e., structural (e.g., control and data flow),
dynamic (e.g., execution traces), process (e.g., CVS logs), and textual (e.g.,
identifiers and comments in source code, documentation). The textual

Textual Analysis and Software Quality: Challenges and Opportunities

information captures knowledge about the problem and solution domain, about
developer’s intentions, client demands, etc. and it is the most common type of
information present in software. Text is also the common form to represent
information among various artifacts at different abstraction levels. Among other
things, developers use textual information to understand what a specific piece
of code implements and make decisions during their daily tasks. For very small
software systems, developers could read all the text found in software artifacts
and extract and use only the information that is useful for their current task.
However, as the size and complexity of the system increases, tools are required
to extract, analyze, and retrieve this information to the developers.

For these reasons, in recent and past years, textual analysis (TA) has been
successfully applied to leverage the textual information and help developers in
several software engineering tasks, such as traceability recovery [Antoniol et al,
2002], impact analysis [Canfora and Cerulo, 2005], clone detection [Marcus and
Maletic, 2001], feature location [Poshyvanyk et al, 2007]. The use of TA in
software engineering has demonstrated to be effective for various reasons:

− it is lightweight and to some extent independent on the programming
language, as it does not require a full source code parsing, but only its
tokenization and (for some applications) lexical analysis;

− it provides information complementary to what structural or dynamic
analysis can provide [Marcus et al, 2008];

− it models software artifacts as textual documents, thus it can be applied
to different kinds of artifacts (i.e., it is not limited to the source code) and,
above all, can be used to perform combined analysis of different kinds of
artifacts (e.g., requirements and source code), as in the case of
traceability recovery.

All these successful applications increased in the recent years the interest in
using TA for improving and assessing the quality of software systems. This
paper offers an overview of the process that is usually followed when using TA
techniques to support software engineering tasks, focusing the attention on
activities aimed at improving software quality. Other than discussing the state of
the art, the paper also presents challenges and opportunities for the future.
Thus, it represents a useful roadmap for both practitioners, who want to know
how to use TA in their working environment, and researchers, who want to get
closer and doing research on this topic.

Paper structure. Section 2 provides background information on how to
extract and manage textual information. Sections 3 and 4 describe how textual
information can be used to measure quality aspects, i.e., cohesion and
coupling, and identifying refactoring opportunities, respectively. Finally, Section
6 concludes the paper highlighting challenges and new horizons.

2. Background
TA has been proposed for a variety of software engineering tasks, and making
use of different text retrieval (TR) techniques. No matter the particular task or

Textual Analysis and Software Quality: Challenges and Opportunities

retrieval technique used, an approach based on TR generally follows the same
process:

− extracting text documents from software artifacts (the corpus);
− indexing the corpus;
− computing similarity between documents.

Each step is explained in detail in the following subsections.

2.1 Extracting the corpus
The first step in using TR techniques is to define a collection of text

documents, also known as corpus, which are extracted from the software
artifacts. Documents can be extracted at different granularities from an artifact.
For example, in the case of source code, a document could be represented by
structural elements of the code, such as a class. In the case of textual software
documentation, sentences, paragraphs, sections, or chapters could represent
the documents. Thus, a software artifact may be represented by one or more
documents in the corpus. The document granularity needs to be decided up
front according to the needs of the task at hand and can influence greatly the
results of text retrieval.

Once the corpus is extracted, a few optional, corpus normalization steps can
be performed before the documents are indexed by the text retrieval technique
[Baeza-Yates and Ribeiro-Neto, 1999]:

− term extraction, aimed at extracting words from the artifacts and
removing anything useless (e.g., punctuation or programming language
operators);

− identifier splitting, aimed at splitting composite identifiers. This step is
important to align source code and documentation vocabulary, since
identifiers are often composed of several concatenated dictionary words.
The simplest approaches for identifier splitting are based on common
conventions for separating words in identifiers, such as using camel case,
underscore, numbers and symbols as separators. For example,
SETpointer, set_pointer, setPointer would be all split to set and
pointer. More advanced techniques make use of dictionaries and
abbreviation lists to identify words in the cases where common naming
conventions are not used, e.g., the identifier setptr would be split into
set and pointer based on these techniques [Guerrouj et al, 2012];

− term filtering, aimed at removing common terms, referred to as “stop
words” (e.g., articles, prepositions, common use verbs, or programming
language keywords). Words shorter than a given length (e.g., shorter
than three characters) are removed as well.

Morphological analysis of the extracted words is often performed to bring
back words to the same root (e.g., by removing plurals to nouns, or verb
conjugations). The simplest way to do morphological analysis is by using a
stemmer, e.g., the Porter stemmer [Porter, 1980]. Other stemmers used by

Textual Analysis and Software Quality: Challenges and Opportunities

researchers in software engineering are WordNet's morphstr function1 and the
Snowball stemmer2.

2.2 Indexing the corpus
The extracted information is stored in a m x n matrix (called term-by-

document matrix), where m is the number of terms occurring in all artifacts, and
n is the total number of artifacts in the repository. A generic entry wi,j of this
matrix denotes a measure of the weight (i.e., relevance) of the ith term in the jth
document [Baeza-Yates and Ribeiro-Neto, 1999]. Such weight, independently
by the used technique, is based on two criteria: how well they describe the
current document (local weight) and how they relate to the entire corpus (global
weight). A widely used measure is the tf-idf (term frequency-inverse document
frequency), which gives more importance to words having a high frequency in a
document (tf) and appearing in a small number of documents, thus having a
high discriminating power (high idf).

2.3 Computing similarity between documents
Based on the term-by-document matrix representation, different Information

Retrieval (IR) methods can be used to compute similarity between documents
aiming at deriving latent patterns between them. A survey of available research
papers reveals that probabilistic models, Vector Space Model (VSM), its
extension Latent Semantic Indexing (LSI), and Latent Dirichlet Allocation (LDA)
are the four most frequently used IR methods in software engineering. In the
following we describe in details VSM and LSI since these two techniques have
been used to assess software quality. However, the interested reader can find
more details on IR methods the book by Baeza-Yates and Ribeiro-Neto [1999].

In the VSM, a document is represented by a vector of terms, i.e., column of
the term-by-document matrix. Since any document contains a limited set of
terms, while the vocabulary (all the terms in the documents) can be millions of
terms, most document vectors are very sparse and they generally operate in a
positive quadrant of the vector space, i.e., no term is assigned a negative value.
In VSM the angle between two vectors is used as a measure of divergence
between the vectors, and the cosine of the angle is used as the numeric
similarity between the corresponding documents. The cosine has a property
indicating 1.0 for identical vectors (very similar documents) and 0.0 for
orthogonal vectors (completely different document). A common criticism of VSM
is that it does not take into account relations between terms [Deerwester et al,
1990], e.g., having “automobile” in one document and “car” in another document
does not contribute to the similarity measure between these two documents.

LSI [Deerwester et al, 1990] was developed to overcome the synonymy and
polysemy problems, which occur with the VSM model. In LSI the dependencies
between terms and documents, in addition to the associations between terms
and documents, are explicitly taken into account. LSI assumes that there is an

1 http://wordnet.princeton.edu/
2 http://snowball.tartarus.org/

Textual Analysis and Software Quality: Challenges and Opportunities

underlying or “latent structure” in word usage that is partially obscured by
variability in word choice, and uses statistical techniques to estimate this latent
structure. For example, both “car” and “automobile” are likely to co-occur in
different documents with related terms, such as “motor”, “wheel”, etc. LSI
exploits information about co-occurrence of terms (i.e., latent structure) to
automatically discover synonymy between different terms.

Specifically, LSI defines a term-by-document matrix as well as VSM. Then it
applies the Singular Value Decomposition (SVD) [Deerwester et al, 1990] to
project the original term-by-document matrix into a reduced space of concepts.
The size of this space is k, that is much lower than n, i.e., number of terms. The
cosine of the angle between two vectors in the k-space represents the similarity
of the two documents (terms, respectively) with respect to the concepts they
share. In this way, SVD captures the underlying structure in the association of
terms and documents. Terms that occur in similar documents, for example, will
be near each other in the space of concepts, even if they never co-occur in the
same document. This also means that some documents that do not share any
word, but share similar words may nonetheless be near in the space of
concepts. The choice of k is critical and the proper way to make such a choice
is an open issue in the factor analysis literature [Deerwester et al, 1990].

The obtained similarity measure is used to support different software
engineering tasks. For instance, given a software artifact used as query (e.g.,
requirement), the similarity measure can be used to find similar source code
classes in order to identify traceability links between requirements and source
code [Antoniol et al, 2002] or to perform impact analysis [Canfora and Cerulo,
2005]. In the next sections we show how textual similarity can be used to
monitor and improve the internal quality of software systems.

3.Capturing cohesion and coupling
Cohesion is a desirable property of software as it positively impacts

understanding, reuse, and maintenance. There are several metrics to measure
the cohesion of a software component. These metrics are generally based on
structural information extracted from the source code, such as attribute
references [Chidamber and Kemerer, 1998]. However, information contained in
identifiers and comments could be worthwhile to measure the cohesiveness of
software component. Specifically, two components are conceptually related if
their (domain) semantics are similar, i.e., they perform conceptually similar
actions. To this aim, Marcus et al. [2008] proposed a semantic measure, called
Conceptual Cohesion of Classes (C3), to capture the cohesion of a class
inspired by the mechanisms used to measure textual coherence in cognitive
psychology and computational linguistics. In order to capture the semantic
cohesion of a class, LSI is used to represent each method as a real-valued
vector that spans a space defined by the vocabulary extracted from the code.
The conceptual similarity between two methods (CSM) is then calculated as the
cosine of the angle between their corresponding vectors. Thus, the higher the
value of CSM the higher the similarity between two methods. The average value
between the CSM of all passable pairs of methods of a class represents the

Textual Analysis and Software Quality: Challenges and Opportunities

Conceptual Cohesion of the class. In short, the measure captures relationships
between the comments, identifiers, and other text present in the methods,
based on word usages in the entire code. It is clear that C3 depends on the
consistency of naming conventions used in the source code as well as on the
comments contained in it. An empirical study conducted on three open-source
systems has been performed to compare the novel metric with a set of existing
metrics based on structural information, e.g., Lack of COhesion in Methods
(LCOM) [Chidamber and Kemerer, 1998] and Coh [Briand et al, 1998]. The
results achieved indicated that C3 captures different aspects of class cohesion
compared to any of the existing cohesion measures.

Following the same idea, Poshyvanyk et al. [2009] proposed the Conceptual
Coupling Between Classes (CCBC). Specifically, they used LSI to measure the
similarity between methods of two classes. The average similarity of all possible
pairs of the two classes provides an indication of the conceptual coupling
between the two classes. The higher the similarity, the higher the coupling
between them, i.e., the methods of the two classes perform conceptually similar
actions. An empirical study indicated that CCBC provides orthogonal
information as compared to coupling metrics based on structural information,
e.g., Coupling between Objects (CBO) [Chidamber and Kemerer, 1998].

3.1 Improving defect prediction
Empirical studies have indicated that semantic metrics capture different

aspects of cohesion and coupling as compared to structural metrics. This
suggests that the combination of semantic and structural metrics is a more
complete cohesion indicator than any combination of structural metrics. In order
to verify such a conjecture, Marcus et al. [2008] used the C3 metric to improve
defect prediction models 3 based only on structural cohesion metrics. They
performed a study where logistic regression models were used to predict the
defects of classes of version 1.6 and 1.7 of Mozilla. The considered predictors
were the metrics from the CK suite [Chidamber and Kemerer, 1998] and the C3.
Results indicated that the three models with the best precision in prediction
defect-prone classes are C3+LCOM3, C3+LCOM1, and C3+Coh. Thus, C3 is a
useful indicator of an external property of classes in OO systems, that is, the
defect proneness of classes. More importantly, the results support the initial
conjecture that the combination of C3 with other cohesion metrics allows to
build superior models for detecting defect prone classes.

3.2 Capturing developer perception of quality
From the analysis of the literature we can derive that semantic metrics

complement structural metrics and are useful to measure the quality of software
components. However, little is known about how developers actually perceive
quality and if existing measures align with this perception.

3 One of the most interesting applications of cohesion metrics in software engineering

is to predict defects in classes.

Textual Analysis and Software Quality: Challenges and Opportunities

In order to bridge this gap, Bavota et al. [2013a] empirically investigated how
a specific quality attribute, namely class coupling – as captured by structural,
dynamic, semantic, and logical coupling measures – aligns with developers'
perception of coupling. The study has been conducted on three Java open-
source systems, i.e., ArgoUML, JHotDraw and jEdit, and involved 64 students,
academics, and industrial practitioners from around the world, as well as 12
active developers of these three systems. In the context of the study, the
authors asked participants to assess the coupling between pairs of classes
exhibiting high (low) coupling as indicated by the four different types of coupling
and provide their ratings and some rationale.

The results indicate that the peculiarity of the semantic coupling measure
allows it to better estimate the mental model of developers than the other
coupling measures. In other words, when the semantic measure indicates high
(low) coupling between two classes, also the developers feel the same. This is
because, in several cases, the interactions between classes are encapsulated
in the source code vocabulary, and cannot be easily derived by only looking at
structural relationships, such as method calls.

4.Identifying refactoring opportunities
During software evolution the internal structure of the system undergoes

continuous modifications. These continuous changes push away the source
code from its original design, often reducing its quality, including class cohesion
[Fowler, 1999]. In such scenarios a refactoring of the system is recommended.
Refactoring has been defined as “the process of changing a software system in
such a way that it does not alter the external behavior of the code yet improves
its internal structure” [Fowler, 1999].

Typical advantages of refactoring include improved readability and reduced
complexity of source code, a more expressive internal architecture and better
software extensibility [Fowler, 1999]. For these reasons, refactoring is
advocated as a good programming practice to be continuously performed
during software development and maintenance. However, despite its
advantages, performing refactoring in non-trivial software systems might be
very challenging. First, the identification of refactoring opportunities in large
systems is very difficult, due to the fact that the design flaws are not always
easy to identify. Second, when a design problem has been identified, it is not
always easy to apply the correct refactoring operation to solve it. All these
observations highlight the need for (semi)automatic approaches supporting the
software engineer in (i) identifying refactoring opportunities (i.e., design flaws)
and (ii) designing and applying a refactoring solution.

Existing approaches for suggesting refactoring opportunities generally use
metrics, e.g. cohesion metrics, which capture structural relationships between
the members of a class, e.g., method-to-attribute references. However,
semantic metrics have been proved to complement structural cohesion metrics.
Based on this observation, Bavota et al. [2013c] proposed a method for
automating the Extract Class refactoring. The proposed approach analyzes
(structural and semantic) relationships between the methods in a class to

Textual Analysis and Software Quality: Challenges and Opportunities

identify chains of strongly related methods. The identified method chains are
used to define new classes with higher cohesion than the original class, while
preserving the overall coupling between the new classes and the classes
interacting with the original class. The proposed approach has been empirically
evaluated on open source systems in order to assess how good and useful the
proposed refactoring solutions are considered by software engineers and how
well the proposed refactorings approximate the refactorings done by the original
developers. Results indicate that (i) the semantic measure plays a crucial role in
identifying meaningful refactorings; and (ii) the proposed solutions are useful in
guiding refactorings. Following the same idea, Bavota et al. [2013d] also
proposed an approach for suggesting Extract Package refactoring aiming at
improving cohesion in packages.

Semantic measures were also used to identify Move Class refactoring
[Bavota et al, 2013c]. The proposed approach, called R3 (Rational Refactoring
via RTM), analyzes underlying latent topics in source code as well as structural
dependencies to recommend (and explain) refactoring operations aiming at
moving a class to a more suitable package. R3 has been evaluated in two
empirical studies. The results of the first study conducted on nine software
systems indicate that R3 provides a coupling reduction from 10% to 30%
among the software modules. The second study with 62 developers indicates
that more than 70% of the recommendations (and explanations) where
considered meaningful from a functional point of view.

5.Conclusion and directions for future work
Textual analysis has been widely and successfully applied in software

engineering for supporting several tasks. However, they also have some
weaknesses, and poses challenges for researchers:

−C1: Quality of source code lexicon. TA depends on the quality of the
lexicon: a bad lexicon often means inaccurate – if not completely wrong –
results. There are two common problems in the TA of software artifacts. The
first is represented by the presence of inconsistent terms in related
documents (e.g., requirements express some concepts using certain words,
whereas the source code uses synonyms or abbreviations). The second
problem is related to the presence of “noise” in software artifacts, for
example due to recurring terms that do not bring information relevant for the
analysis task, e.g. programming language keywords and terms that are part
of a specific document template, such as a test case specification, a use
case, or a bug report.
−C2: Setting of textual analysis technique. TA techniques require configuring
different components and their respective parameters, such as type of pre-
processors (e.g., splitting identifiers, term weighting schema, stemmers).
Despite this overwhelming popularity of IR methods in SE research, most of
the proposed approaches are based on ad-hoc methods to configure these
solutions, components, and their configurations, thus resulting oftentimes in
suboptimal performance of such promising analysis methods. In other

Textual Analysis and Software Quality: Challenges and Opportunities

words, existing methods for designing IR-based solutions for SE tasks is
currently based on art, rather than science. This also makes the practical
use of IR-based processes quite difficult and undermines the technology
transfer to software industry.

Clearly, these challenges represent on one hand an obstacle for the
technology transfer in industry, on the other hand a fertile ground for the
definition of new solutions aimed at advancing the state of the art. We briefly
outline some opportunities for future work aimed at mitigating the weaknesses
of TA for software engineering:

−O1: Inducing developers to improve the quality of source code lexicon. In
1990 Chikofsky and Cross [1990] defined the continuous reverse
engineering, i.e., “reverse engineering, used with evolving software
development technologies, will provide significant incremental
enhancements to our productivity”. Inspired by continuous reverse
engineering, we conjecture that continuous textual analysis could be one of
the solutions for inducing developers to improve the quality of source code
lexicon. Preliminary study indicated that developers are induced to improve
the source code lexicon if the software development environment provides
information about the textual similarity between the source code under
development and the related high-level artifacts [De Lucia et al, 2011].
−O2: Automatic setting on textual analysis process. Approaches for solving
the problem of assembling IR-based solutions for a given SE task and
accompanying dataset are required. Our underlying assumption, which is
supported by a large body of empirical research in the field, is that it is not
possible to build a set of guidelines for assembling IR-based solutions for a
given set of tasks as some of these solutions are likely to underperform on
previously unseen datasets. Thus, automatic approaches need to be defined
to find an optimal setting of the TA technique given a specific dataset.
−O3: Empirical studies. Existing approaches based on textual retrieval have
been evaluated off-line, i.e., they have been applied on ended software
projects and the benefits have been evaluated considering some metrics.
However, such approaches are intended to be used by software engineers.
Thus, they need to be validated on-line, i.e., when used by real users during
the development of software systems. Only in this way it is possible to
measure the actual benefits of TA in supporting software engineering tasks.

References
[Antoniol et al, 2002] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E.

Merlo, Recovering traceability links between code and documentation, IEEE TSE, 28,
10, 970–983, 2002.

[Baeza-Yates and Ribeiro-Neto, 1999] Baeza-Yates, R., Ribeiro-Neto, B.: Modern
Information Retrieval. Addison-Wesley, 1999.

Textual Analysis and Software Quality: Challenges and Opportunities

[Bavota et al, 2013a] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, A.
De Lucia, An Empirical Study on the Developers Perception of Software Coupling, Proc.
of ICSE, San Francisco, USA, 2013, 692-701.

[Bavota et al, 2013b] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, A. De Lucia.
Improving software modularization via automated analysis of latent topics and
dependencies. TOSEM, 2013.

[Bavota et al, 2013c] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto. Automating
extract class refactoring: an improved method and its evaluation. EMSE, 2013.

[Bavota et al, 2013d] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto. Using structural
and semantic measures to improve software modularization. EMSE, 2013.

[Briand et al, 1998] L. C. Briand, J. W. Daly, and J. Wüst, A unified framework for
cohesion measurement in object-oriented systems, EMSE, 3, 1, 65-117, 1998.

[Canfora and Cerulo, 2005] G. Canfora and L. Cerulo, Impact analysis by mining
software and change request repositories, in Proc. of METRICS, Como, Italy, IEEE CS
Press, 2005, 20–29.

[Chidamber and Kemerer, 1998] S. R. Chidamber, C. F. Kemerer. A metrics suite for
object-oriented design. IEEE TSE, 20,6, 476-493, 1994.

[Chikofsky and Cross, 1990] E. J. Chikofsky, James H. Cross II: Reverse Engineering
and Design Recovery: A Taxonomy. IEEE Software 7(1): 13-17 (1990).

[Deerwester et al, 1990] S. Deerwester, S. T. Dumais, G. W. Furnas, T.K. Landauer,
R. Harshman. Indexing by latent semantic analysis. JASIST, 41, 6, 391–407, 1990.

[De Lucia et al, 2011] A. De Lucia, M. Di Penta, R. Oliveto: Improving Source Code
Lexicon via Traceability and Information Retrieval. IEEE TSE, 37,2, 205-227, 2011.

[Fowler, 1999] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley, 1999.

[Guerrouj et al., 2012] L. Guerrouj, P. Galinier, Y.-G. Guéhéneuc, G. Antoniol, M. Di
Penta: TRIS: A fast and accurate identifiers splitting and expansion algorithm. Proc. of
WCRE, Kingston, Canada, IEEE Press, 2012, 103-112.

[Marcus and Maletic, 2001] A. Marcus and J. I. Maletic, Identification of high-level
concept clones in source code, in Proc. of ASE, San Diego, California, USA, IEEE CS
Press, 2001, 107–114.

[Marcus et al, 2008] A. Marcus, D. Poshyvanyk, and R. Ferenc, Using the conceptual
cohesion of classes for fault prediction in object-oriented systems, IEEE TSE, 34, 2,
287–300, 2008.

[Porter, 1980] Porter, M.F.: An algorithm for suffix stripping. Program, 14, 3, 130–
137, 1980.

[Poshyvanyk et al, 2007] D. Poshyvanyk, Y. Gael-Gueheneuc, A. Marcus, G.
Antoniol, and V. Rajlich, Feature location using probabilistic ranking of methods based
on execution scenarios and information retrieval, IEEE TSE, 33, 6, 420–432, 2007.

[Poshyvanyk et al, 2009] D. Poshyvanyk, A. Marcus, R. Ferenc, T. Gyimòthy. Using
information retrieval based coupling measures for impact analysis, EMSE, 14, 1, 5–32,
2009.

