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Abstract. Source code lexicon (identifier names and 
comments) has been used – as an alternative or as a 
complement to source code structure – to perform various 
kinds of analyses (e.g., traceability recovery). All these 
successful applications increased in the recent years the 
interest in using textual analysis for improving and assessing 
the quality of a software system. In particular, textual 
analysis could be used to identify refactoring opportunities or 
ambiguous identifiers that may increase the program 
comprehension burden by creating a mismatch between the 
developers' cognitive model and the intended meaning of 
the term, thus ultimately increasing the risk of fault 
proneness. In addition, when used “on-line” during software 
development, textual analysis could guide the programmers 
to select better identifiers aiming at improving the quality of 
the source code lexicon. In this paper, we overview research 
in text analysis for the assessment and the improvement of 
software quality and discuss our achievements to date, the 
challenges, and the opportunities for the future. 
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1. Introduction  
During software development and evolution a variety of software artifacts are 

created, such as, requirements, bug descriptions, documentation, source code, 
test cases, etc. These artifacts have different representations and contain 
different types of information, i.e., structural (e.g., control and data flow), 
dynamic (e.g., execution traces), process (e.g., CVS logs), and textual (e.g., 
identifiers and comments in source code, documentation). The textual 
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information captures knowledge about the problem and solution domain, about 
developer’s intentions, client demands, etc. and it is the most common type of 
information present in software. Text is also the common form to represent 
information among various artifacts at different abstraction levels. Among other 
things, developers use textual information to understand what a specific piece 
of code implements and make decisions during their daily tasks. For very small 
software systems, developers could read all the text found in software artifacts 
and extract and use only the information that is useful for their current task. 
However, as the size and complexity of the system increases, tools are required 
to extract, analyze, and retrieve this information to the developers.  

For these reasons, in recent and past years, textual analysis (TA) has been 
successfully applied to leverage the textual information and help developers in 
several software engineering tasks, such as traceability recovery [Antoniol et al, 
2002], impact analysis [Canfora and Cerulo, 2005], clone detection [Marcus and 
Maletic, 2001], feature location [Poshyvanyk et al, 2007]. The use of TA in 
software engineering has demonstrated to be effective for various reasons: 

− it is lightweight and to some extent independent on the programming 
language, as it does not require a full source code parsing, but only its 
tokenization and (for some applications) lexical analysis;  

− it provides information complementary to what structural or dynamic 
analysis can provide [Marcus et al, 2008];  

− it models software artifacts as textual documents, thus it can be applied 
to different kinds of artifacts (i.e., it is not limited to the source code) and, 
above all, can be used to perform combined analysis of different kinds of 
artifacts (e.g., requirements and source code), as in the case of 
traceability recovery. 

All these successful applications increased in the recent years the interest in 
using TA for improving and assessing the quality of software systems. This 
paper offers an overview of the process that is usually followed when using TA 
techniques to support software engineering tasks, focusing the attention on 
activities aimed at improving software quality. Other than discussing the state of 
the art, the paper also presents challenges and opportunities for the future. 
Thus, it represents a useful roadmap for both practitioners, who want to know 
how to use TA in their working environment, and researchers, who want to get 
closer and doing research on this topic. 

Paper structure. Section 2 provides background information on how to 
extract and manage textual information. Sections 3 and 4 describe how textual 
information can be used to measure quality aspects, i.e., cohesion and 
coupling, and identifying refactoring opportunities, respectively. Finally, Section 
6 concludes the paper highlighting challenges and new horizons.  

2. Background 
TA has been proposed for a variety of software engineering tasks, and making 
use of different text retrieval (TR) techniques. No matter the particular task or 
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retrieval technique used, an approach based on TR generally follows the same 
process: 

− extracting text documents from software artifacts (the corpus); 
− indexing the corpus; 
− computing similarity between documents. 

Each step is explained in detail in the following subsections. 

2.1 Extracting the corpus 
The first step in using TR techniques is to define a collection of text 

documents, also known as corpus, which are extracted from the software 
artifacts. Documents can be extracted at different granularities from an artifact. 
For example, in the case of source code, a document could be represented by 
structural elements of the code, such as a class. In the case of textual software 
documentation, sentences, paragraphs, sections, or chapters could represent 
the documents. Thus, a software artifact may be represented by one or more 
documents in the corpus. The document granularity needs to be decided up 
front according to the needs of the task at hand and can influence greatly the 
results of text retrieval. 

Once the corpus is extracted, a few optional, corpus normalization steps can 
be performed before the documents are indexed by the text retrieval technique 
[Baeza-Yates and Ribeiro-Neto, 1999]: 

− term extraction, aimed at extracting words from the artifacts and 
removing anything useless (e.g., punctuation or programming language 
operators); 

− identifier splitting, aimed at splitting composite identifiers. This step is 
important to align source code and documentation vocabulary, since 
identifiers are often composed of several concatenated dictionary words. 
The simplest approaches for identifier splitting are based on common 
conventions for separating words in identifiers, such as using camel case, 
underscore, numbers and symbols as separators. For example, 
SETpointer, set_pointer, setPointer would be all split to set and 
pointer. More advanced techniques make use of dictionaries and 
abbreviation lists to identify words in the cases where common naming 
conventions are not used, e.g.,  the identifier setptr would be split into 
set and pointer based on these techniques [Guerrouj et al, 2012]; 

− term filtering, aimed at removing common terms, referred to as “stop 
words” (e.g., articles, prepositions, common use verbs, or programming 
language keywords). Words shorter than a given length (e.g., shorter 
than three characters) are removed as well.  

Morphological analysis of the extracted words is often performed to bring 
back words to the same root (e.g., by removing plurals to nouns, or verb 
conjugations). The simplest way to do morphological analysis is by using a 
stemmer, e.g., the Porter stemmer [Porter, 1980]. Other stemmers used by 
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researchers in software engineering are WordNet's morphstr function1 and the 
Snowball stemmer2. 

2.2 Indexing the corpus 
The extracted information is stored in a m x n matrix (called term-by-

document matrix), where m is the number of terms occurring in all artifacts, and 
n is the total number of artifacts in the repository. A generic entry wi,j of this 
matrix denotes a measure of the weight (i.e., relevance) of the ith term in the jth  
document [Baeza-Yates and Ribeiro-Neto, 1999]. Such weight, independently 
by the used technique, is based on two criteria: how well they describe the 
current document (local weight) and how they relate to the entire corpus (global 
weight). A widely used measure is the tf-idf (term frequency-inverse document 
frequency), which gives more importance to words having a high frequency in a 
document (tf) and appearing in a small number of documents, thus having a 
high discriminating power (high idf). 

2.3 Computing similarity between documents 
Based on the term-by-document matrix representation, different Information 

Retrieval (IR) methods can be used to compute similarity between documents 
aiming at deriving latent patterns between them. A survey of available research 
papers reveals that probabilistic models, Vector Space Model (VSM), its 
extension Latent Semantic Indexing (LSI), and Latent Dirichlet Allocation (LDA) 
are the four most frequently used IR methods in software engineering. In the 
following we describe in details VSM and LSI since these two techniques have 
been used to assess software quality. However, the interested reader can find 
more details on IR methods the book by Baeza-Yates and Ribeiro-Neto [1999]. 

In the VSM, a document is represented by a vector of terms, i.e., column of 
the term-by-document matrix. Since any document contains a limited set of 
terms, while the vocabulary (all the terms in the documents) can be millions of 
terms, most document vectors are very sparse and they generally operate in a 
positive quadrant of the vector space, i.e., no term is assigned a negative value. 
In VSM the angle between two vectors is used as a measure of divergence 
between the vectors, and the cosine of the angle is used as the numeric 
similarity between the corresponding documents. The cosine has a property 
indicating 1.0 for identical vectors (very similar documents) and 0.0 for 
orthogonal vectors (completely different document). A common criticism of VSM 
is that it does not take into account relations between terms [Deerwester et al, 
1990], e.g., having “automobile” in one document and “car” in another document 
does not contribute to the similarity measure between these two documents.  

LSI [Deerwester et al, 1990] was developed to overcome the synonymy and 
polysemy problems, which occur with the VSM model. In LSI the dependencies 
between terms and documents, in addition to the associations between terms 
and documents, are explicitly taken into account. LSI assumes that there is an 

                                                
1 http://wordnet.princeton.edu/ 
2 http://snowball.tartarus.org/ 
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underlying or “latent structure” in word usage that is partially obscured by 
variability in word choice, and uses statistical techniques to estimate this latent 
structure. For example, both “car” and “automobile” are likely to co-occur in 
different documents with related terms, such as “motor”, “wheel”, etc. LSI 
exploits information about co-occurrence of terms (i.e., latent structure) to 
automatically discover synonymy between different terms. 

Specifically, LSI defines a term-by-document matrix as well as VSM. Then it 
applies the Singular Value Decomposition (SVD) [Deerwester et al, 1990] to 
project the original term-by-document matrix into a reduced space of concepts. 
The size of this space is k, that is much lower than n, i.e., number of terms. The 
cosine of the angle between two vectors in the k-space represents the similarity 
of the two documents (terms, respectively) with respect to the concepts they 
share. In this way, SVD captures the underlying structure in the association of 
terms and documents. Terms that occur in similar documents, for example, will 
be near each other in the space of concepts, even if they never co-occur in the 
same document. This also means that some documents that do not share any 
word, but share similar words may nonetheless be near in the space of 
concepts. The choice of k is critical and the proper way to make such a choice 
is an open issue in the factor analysis literature [Deerwester et al, 1990]. 

The obtained similarity measure is used to support different software 
engineering tasks. For instance, given a software artifact used as query (e.g., 
requirement), the similarity measure can be used to find similar source code 
classes in order to identify traceability links between requirements and source 
code [Antoniol et al, 2002] or to perform impact analysis [Canfora and Cerulo, 
2005]. In the next sections we show how textual similarity can be used to 
monitor and improve the internal quality of software systems. 

3.Capturing cohesion and coupling  
Cohesion is a desirable property of software as it positively impacts 

understanding, reuse, and maintenance. There are several metrics to measure 
the cohesion of a software component. These metrics are generally based on 
structural information extracted from the source code, such as attribute 
references [Chidamber and Kemerer, 1998]. However, information contained in 
identifiers and comments could be worthwhile to measure the cohesiveness of 
software component. Specifically, two components are conceptually related if 
their (domain) semantics are similar, i.e., they perform conceptually similar 
actions. To this aim, Marcus et al. [2008] proposed a semantic measure, called 
Conceptual Cohesion of Classes (C3), to capture the cohesion of a class 
inspired by the mechanisms used to measure textual coherence in cognitive 
psychology and computational linguistics. In order to capture the semantic 
cohesion of a class, LSI is used to represent each method as a real-valued 
vector that spans a space defined by the vocabulary extracted from the code. 
The conceptual similarity between two methods (CSM) is then calculated as the 
cosine of the angle between their corresponding vectors. Thus, the higher the 
value of CSM the higher the similarity between two methods. The average value 
between the CSM of all passable pairs of methods of a class represents the 
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Conceptual Cohesion of the class. In short, the measure captures relationships 
between the comments, identifiers, and other text present in the methods, 
based on word usages in the entire code. It is clear that C3 depends on the 
consistency of naming conventions used in the source code as well as on the 
comments contained in it. An empirical study conducted on three open-source 
systems has been performed to compare the novel metric with a set of existing 
metrics based on structural information, e.g., Lack of COhesion in Methods 
(LCOM) [Chidamber and Kemerer, 1998] and Coh [Briand et al, 1998]. The 
results achieved indicated that C3 captures different aspects of class cohesion 
compared to any of the existing cohesion measures. 

Following the same idea, Poshyvanyk et al. [2009] proposed the Conceptual 
Coupling Between Classes (CCBC). Specifically, they used LSI to measure the 
similarity between methods of two classes. The average similarity of all possible 
pairs of the two classes provides an indication of the conceptual coupling 
between the two classes. The higher the similarity, the higher the coupling 
between them, i.e., the methods of the two classes perform conceptually similar 
actions. An empirical study indicated that CCBC provides orthogonal 
information as compared to coupling metrics based on structural information, 
e.g., Coupling between Objects (CBO) [Chidamber and Kemerer, 1998]. 

3.1 Improving defect prediction 
Empirical studies have indicated that semantic metrics capture different 

aspects of cohesion and coupling as compared to structural metrics. This 
suggests that the combination of semantic and structural metrics is a more 
complete cohesion indicator than any combination of structural metrics. In order 
to verify such a conjecture, Marcus et al. [2008] used the C3 metric to improve 
defect prediction models 3 based only on structural cohesion metrics. They 
performed a study where logistic regression models were used to predict the 
defects of classes of version 1.6 and 1.7 of Mozilla. The considered predictors 
were the metrics from the CK suite [Chidamber and Kemerer, 1998] and the C3. 
Results indicated that the three models with the best precision in prediction 
defect-prone classes are C3+LCOM3, C3+LCOM1, and C3+Coh. Thus, C3 is a 
useful indicator of an external property of classes in OO systems, that is, the 
defect proneness of classes. More importantly, the results support the initial 
conjecture that the combination of C3 with other cohesion metrics allows to 
build superior models for detecting defect prone classes.  

3.2 Capturing developer perception of quality 
From the analysis of the literature we can derive that semantic metrics 

complement structural metrics and are useful to measure the quality of software 
components. However, little is known about how developers actually perceive 
quality and if existing measures align with this perception.  

                                                
3 One of the most interesting applications of cohesion metrics in software engineering 

is to predict defects in classes. 
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In order to bridge this gap, Bavota et al. [2013a] empirically investigated how 
a specific quality attribute, namely class coupling – as captured by structural, 
dynamic, semantic, and logical coupling measures – aligns with developers' 
perception of coupling. The study has been conducted on three Java open-
source systems, i.e., ArgoUML, JHotDraw and jEdit, and involved 64 students, 
academics, and industrial practitioners from around the world, as well as 12 
active developers of these three systems. In the context of the study, the 
authors asked participants to assess the coupling between pairs of classes 
exhibiting high (low) coupling as indicated by the four different types of coupling 
and provide their ratings and some rationale.  

The results indicate that the peculiarity of the semantic coupling measure 
allows it to better estimate the mental model of developers than the other 
coupling measures. In other words, when the semantic measure indicates high 
(low) coupling between two classes, also the developers feel the same. This is 
because, in several cases, the interactions between classes are encapsulated 
in the source code vocabulary, and cannot be easily derived by only looking at 
structural relationships, such as method calls. 

4.Identifying refactoring opportunities 
During software evolution the internal structure of the system undergoes 

continuous modifications. These continuous changes push away the source 
code from its original design, often reducing its quality, including class cohesion 
[Fowler, 1999]. In such scenarios a refactoring of the system is recommended. 
Refactoring has been defined as “the process of changing a software system in 
such a way that it does not alter the external behavior of the code yet improves 
its internal structure” [Fowler, 1999]. 

Typical advantages of refactoring include improved readability and reduced 
complexity of source code, a more expressive internal architecture and better 
software extensibility [Fowler, 1999]. For these reasons, refactoring is 
advocated as a good programming practice to be continuously performed 
during software development and maintenance. However, despite its 
advantages, performing refactoring in non-trivial software systems might be 
very challenging. First, the identification of refactoring opportunities in large 
systems is very difficult, due to the fact that the design flaws are not always 
easy to identify. Second, when a design problem has been identified, it is not 
always easy to apply the correct refactoring operation to solve it. All these 
observations highlight the need for (semi)automatic approaches supporting the 
software engineer in (i) identifying refactoring opportunities (i.e., design flaws) 
and (ii) designing and applying a refactoring solution.  

Existing approaches for suggesting refactoring opportunities generally use 
metrics, e.g. cohesion metrics, which capture structural relationships between 
the members of a class, e.g., method-to-attribute references. However, 
semantic metrics have been proved to complement structural cohesion metrics. 
Based on this observation, Bavota et al. [2013c] proposed a method for 
automating the Extract Class refactoring. The proposed approach analyzes 
(structural and semantic) relationships between the methods in a class to 
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identify chains of strongly related methods. The identified method chains are 
used to define new classes with higher cohesion than the original class, while 
preserving the overall coupling between the new classes and the classes 
interacting with the original class. The proposed approach has been empirically 
evaluated on open source systems in order to assess how good and useful the 
proposed refactoring solutions are considered by software engineers and how 
well the proposed refactorings approximate the refactorings done by the original 
developers. Results indicate that (i) the semantic measure plays a crucial role in 
identifying meaningful refactorings; and (ii) the proposed solutions are useful in 
guiding refactorings. Following the same idea, Bavota et al. [2013d] also 
proposed an approach for suggesting Extract Package refactoring aiming at 
improving cohesion in packages. 

Semantic measures were also used to identify Move Class refactoring 
[Bavota et al, 2013c]. The proposed approach, called R3 (Rational Refactoring 
via RTM), analyzes underlying latent topics in source code as well as structural 
dependencies to recommend (and explain) refactoring operations aiming at 
moving a class to a more suitable package. R3 has been evaluated in two 
empirical studies. The results of the first study conducted on nine software 
systems indicate that R3 provides a coupling reduction from 10% to 30% 
among the software modules. The second study with 62 developers indicates 
that more than 70% of the recommendations (and explanations) where 
considered meaningful from a functional point of view. 

5.Conclusion and directions for future work 
Textual analysis has been widely and successfully applied in software 

engineering for supporting several tasks. However, they also have some 
weaknesses, and poses challenges for researchers: 

−C1: Quality of source code lexicon. TA depends on the quality of the 
lexicon: a bad lexicon often means inaccurate – if not completely wrong – 
results. There are two common problems in the TA of software artifacts. The 
first is represented by the presence of inconsistent terms in related 
documents (e.g., requirements express some concepts using certain words, 
whereas the source code uses synonyms or abbreviations). The second 
problem is related to the presence of “noise” in software artifacts, for 
example due to recurring terms that do not bring information relevant for the 
analysis task, e.g. programming language keywords and terms that are part 
of a specific document template, such as a test case specification, a use 
case, or a bug report. 
−C2: Setting of textual analysis technique. TA techniques require configuring 
different components and their respective parameters, such as type of pre-
processors (e.g., splitting identifiers, term weighting schema, stemmers). 
Despite this overwhelming popularity of IR methods in SE research, most of 
the proposed approaches are based on ad-hoc methods to configure these 
solutions, components, and their configurations, thus resulting oftentimes in 
suboptimal performance of such promising analysis methods. In other 
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words, existing methods for designing IR-based solutions for SE tasks is 
currently based on art, rather than science. This also makes the practical 
use of IR-based processes quite difficult and undermines the technology 
transfer to software industry.   

Clearly, these challenges represent on one hand an obstacle for the 
technology transfer in industry, on the other hand a fertile ground for the 
definition of new solutions aimed at advancing the state of the art. We briefly 
outline some opportunities for future work aimed at mitigating the weaknesses 
of TA for software engineering: 

−O1: Inducing developers to improve the quality of source code lexicon. In 
1990 Chikofsky and Cross [1990] defined the continuous reverse 
engineering, i.e., “reverse engineering, used with evolving software 
development technologies, will provide significant incremental 
enhancements to our productivity”. Inspired by continuous reverse 
engineering, we conjecture that continuous textual analysis could be one of 
the solutions for inducing developers to improve the quality of source code 
lexicon. Preliminary study indicated that developers are induced to improve 
the source code lexicon if the software development environment provides 
information about the textual similarity between the source code under 
development and the related high-level artifacts [De Lucia et al, 2011]. 
−O2: Automatic setting on textual analysis process. Approaches for solving 
the problem of assembling IR-based solutions for a given SE task and 
accompanying dataset are required. Our underlying assumption, which is 
supported by a large body of empirical research in the field, is that it is not 
possible to build a set of guidelines for assembling IR-based solutions for a 
given set of tasks as some of these solutions are likely to underperform on 
previously unseen datasets. Thus, automatic approaches need to be defined 
to find an optimal setting of the TA technique given a specific dataset. 
−O3: Empirical studies. Existing approaches based on textual retrieval have 
been evaluated off-line, i.e., they have been applied on ended software 
projects and the benefits have been evaluated considering some metrics. 
However, such approaches are intended to be used by software engineers. 
Thus, they need to be validated on-line, i.e., when used by real users during 
the development of software systems. Only in this way it is possible to 
measure the actual benefits of TA in supporting software engineering tasks.  
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