
The Secret Life of Software Communities:
What we know and What we Don’t know

Gemma Catolino1, Fabio Palomba2, Damian A. Tamburri3
Delft University of Technology1, University of Salerno2,

Eindhoven University of Technology & Jheronimus Academy of Data Science (JADS)3

g.catolino@tudelft.nl, fpalomba@unisa.it, d.a.tamburri@tue.nl

Abstract—Communities of software practice are increasingly
playing a central role in the development, operation, mainte-
nance, and evolution of good-quality software, as well as DevOps
pipelines, lean Organizations and Global Software Development.
However, it is still unknown the structures and characteristics
behind such communities. For this reason, in this paper, we tried
to explore the organizational secret of communities, trying to
offer a few practical extracts of (1) what we know and is known,
(2) what we know to be unknown, and (3) what we know to
be tentatively discoverable in the near future from an empirical
research point of view. Moreover, the paper provides a number
of recommendations for practitioners to help and be helped in
their community endeavors.

Index Terms—Community Types; DevOps; Road Map.

I. INTRODUCTION

Communities are the foundation and backbone of organized
societies and just as much as our software-driven civil societies
are dense with communities, the software makers are also
organized into communities of practice (e.g., in open-source),
of intent (e.g., in standardization groups), of purpose (e.g.,
as part of agile movements). Recent studies showed how the
community’s health can reflect the quality of the software
produced [5], [6], for this reason research community tried to
deeper analyze and characterize the structure of software com-
munities (i.e., defined as social units of size, dense strongly-
typed and diverse interactions across diverse roles and fluid
characteristics) [12].

In this paper, we discuss about a few basic facts and
observations about the secret life of software communities
which we were able to empirically establish over previous
research studies as well as our own practice as part of software
communities themselves.

We outline the roundup to encourage further research into
understanding and harnessing the (still) very much secret life
of open-source communities, as well as their structural, socio-
technical, and health characteristics. Furthermore, we aim to
call for help from the practitioners themselves in supporting
their own software community activity and therefore, we
provide practitioners with practical recommendations or calls
for help defined with the intent of engaging their interest
around the matter and/or allowing further understanding their
needs from a research perspective, such that we as a research
community can aid them in a better fashion. Moreover, we
provide a brief road map for further research along this
intriguing emerging topic.

II. PRACTICAL RECOMMENDATION

A. FACT 1. Software Communities Have Types

Several community types have been studied in organiza-
tional structures and social networks research - Figure 1 offers
an overview of these types extracted from a systematic studies
on the matter [11], [12]. In Layman’s terms, a community
type is a series of characteristics, a pattern, which remain
constantly true across the social network underlying that
community. What is still understood fairly little in the state
of the art of software engineering research is that, on the one
hand, software communities not surprisingly exhibit the same
types already known in literature, but, on the other hand, the
role of community types and characteristics for the benefit
(or fallacy) of software code qualities as well as software
processes remains mostly unknown.

What we don’t know: (a) the influence of community types
over software qualities as well as the qualities of software
processes; (b) algorithms and measurements to precisely pin-
point type shifts across the community’s life-cycle; (c) design
patterns for community structures which are contiguous with
design patterns in underlying software architectures.

What should practitioners do: (1) follow community
tracking and measurement initiatives such as OPENHUB 1

or BITERGIA 2 to gather insights over their own community
and act upon it - this ensures that progress in community
management, measurement, and steering practices are har-
nessed; (2) engage in community quality and health initiatives
such as CHAOSS 3 - this ensures that initiatives struggling
to crack the code of sustainable software communities are
well fed with engaged practitioners; (3) manifest their own
organizational and socio-technical issues as much as the code-
quality issues - this ensures that social software engineering
[13] researchers have both quantities and qualities of the right
data and evidence to study.

B. FACT 2. Types Influence Software Qualities

We conducted several experiments to exploratively figure
out the boundaries around the influence that software com-
munity types may be playing over the qualities for software
production and its maintenance. Figure 2, for example, shows
the influence of several types over the rate of re-opened

1 http://openhub.net/ 2 https://bitergia.com/ 3 http://chaoss.community/

http://openhub.net/
https://bitergia.com/
http://chaoss.community/


Fig. 1. An Overview of Community Types from the State of the Arts [12]

issues investigated over 25 open-source communities sam-
pled according to community participants age, size, gender
diversity, community programming language, type of product,
geographical dispersion, and activity, the last one measured as
the mean activity stemming from BITERGIA and OPENHUB.
The Box-plot in Figure 2 was generated by operationalizing

Fig. 2. The influence of community types over re-opened software issues

a series of metrics to measure essential characteristics from
Figure 1 and match them with corresponding types as well as
their mean proneness to re-opening issues, that is, the mean
ratio of re-opened issues over 6 months worth of releases
in the projects lifetime. The plot shows that something is
in fact going on - in this case, the data shows that Formal-
Networks (second bar from the left) may be exhibiting an
organizational behavior which tends to re-open issues more
often than other types. Conversely, the opposite seems true
for Informal-Communities (third bar from the left).

What we don’t know: (a) a general quality model of what
software qualities are influenced by which community struc-
ture qualities; (b) which community structure characteristics
play a role for software communities; (c) how to quantify
what is the additional cost or socio-technical debt connected
to sub-optimal characteristics; (d) how to measure a type and
use those measurements as devices for improved governance
or organizational structure agility.

What should practitioners do: (1) open issues on issue-
trackers not only for software code but also for perceived
community structure issues - they are as much impactful as
they are dangerous and can even lead to breaking the internet
(see the NPM incident4); (2) report software community
accidents on your version control system as much as you do on
STACKOVERFLOW - researchers need to study both to come
up with proper empirically established ground truths as well
as practical outputs to support your work.

C. FACT 3. Types narrow with Practitioners’ Experience
Similarly to results in Figure 2, we report that the number

of types intermixed in the same community types, that is, the
number of attributes diversity across a community reduces as
the practitioners’ age (or their experience, skills, community
participation). In the same study that led us to prepare the plot
in Figure 2, we reported an inverse correlation of ∼ −0.40
(p-value << 0.05) between the mean developers experience
with the community (i.e., the total time they spent working in
the community) across our projects sample and the amount of
community types and characteristics that manifest explicitly
across the community.

What we don’t know: (a) how to quantify mentorship and
experience as assets across software communities and how to
reward both in a proper fashion; (b) how to infer community

4 https://tinyurl.com/yaferj3b

https://tinyurl.com/yaferj3b


evangelists and use them as thought leaders for their software
communities; (c) what skills and characteristics matter more
than others in software communities and which skills grow
with age and which others do not, as well as how to foster the
growth and nourishment of skills that cannot grow with time
(e.g., knowledge communication)

What should practitioners do: (1) prepare codes of con-
ducts [1] which reflect also the mentorship, governance struc-
ture, experience and reward management as well as the code
contribution policies or good-behavior across the community;
(2) make the software code reflect the code of conduct, namely,
use comments in software code to reprimand or exercise social
sanctioning [9], [11] wherefore codes of conducts are violated.

D. FACT 4. Communities with more formal characteristics
may result more often into abandon-ware

We observed that 82% of the abandonware communities in
our sample exhibited a formal type in the last 6 months of their
life. This is in line with previous research and observations
from Crowston et al. [14] where informality is signaled as an
essential software community health parameter.

What we don’t know: (1) whether it is in fact true if
formal characteristics and types lead to abandon ware —
empirical software engineering needs to be instrumented to
actually assess and establish this link; (2) what ‘formal’ means,
in the software engineering world and in terms of socio-
technical and organizational relations — typically in software
engineering a formal formulation involves proofs, foundational
theories, but from the realm of social-networks analysis and
organizations research, the word and concept of “formality”
assumes a sensibly different meaning; (3) the measured role
of “informal” as opposed to formal — how can one foster
informal? Is Informal beneficial as formal is not? These and
similar research questions are still out there for the taking;

What should practitioners do: we don’t know, yet.

E. FACT 5. Communities can be healthy and sustainable
Many studies in the literature identify healthy values for

several community characteristics, e.g., socio-technical con-
gruence [2] or community structure verification [3]. These
indicators, stemming from top studies, lead to argue that
software communities, like other thriving communities in our
societal structures, can be turned healthy and made sustainable
with appropriate and dedicated efforts — sites such as BITER-
GIA, OPENHUB, as well as initiatives and research projects
such as OSSMETER 5 are fundamental assets to drive the
societal challenge of making software communities aware and
sensible to their health, as sustainable communities should be.
In this respect, the state of the art in organizations research,
social networks analysis as well as emerging disciplines such
as sustainable community development [4], [14] can aid but
even typical, structured approaches used in software engi-
neering such as formalization [7], e.g., to better understand
and measure the socio-organizational dynamics playing a role
across software communities. And for those skeptical enough

5 http://ossmeter.org/

to think that this endeavor is pointless or less important
than, say, software testing or maintenance, please read your
literature, e.g., a couple of hints are in Smite et al. [10] or
[8].

What we don’t know: (a) a systematically-generated, gen-
eral quality model for software communities with supporting
evaluation and analytic tools and automatons; (b) a practi-
cal implementation of sustainability in software communities
which are currently managed in a rather trial-and-error fashion,
with due exceptions (e.g., the Apache Software Foundation);
(c) the dimensions, qualities, and metrics of software commu-
nity sustainability, to be used jointly with a quality model for
performing, long-lived, high-quality software communities.

What should practitioners do: we don’t know, yet.

III. CONCLUSIONS

As it turns out, there is still information that need to be
further investigate . As a matter of fact, our non-exhaustive
list cannot convey enough that there is much more we don’t
know with respect to how much we do know; most especially,
we don’t know a lot about what should practitioners do
to cater for their communities, striving for healthy types
matching their organizational requirements over time and in
a sustainable fashion. Our conclusion is not only that more
work is needed to explore the aspects we non-exhaustively
pointed at — rather, the most dire observation is that, in order
to better support the (secret) life of software practitioners
in their communities, practitioners themselves may be well
encouraged to treat the community as a software-influencing
artifact itself, thus, for example, opening issues if a community
issue or smell does in fact manifest. An increased practitioner
community consciousness will increase awareness over the
problem, making it more explicit, measurable, and hence
improvable by practitioners as well as for researchers. In the
future it is our ultimate intention to further pursue the road map
that emerges from the previous identified shortcomings, and, at
the same time, work to improve software forges, collaborative
coding environments, IDEs or other software equipment that
practitioners may use to build, maintain, or work upon their
code as part of a lively and healthy community and with more
appropriate software engineering ‘ergonomics’, intended as the
disciplines of software engineering which engage into design-
ing or arranging software commons, communities, workplaces,
work-products, and working systems so that they fit the people
and goals around them [14].

REFERENCES

[1] C. M. ACM. Acm code of ethics and professional conduct. Code of
Ethics, 1992.

[2] M. Cataldo, J. D. Herbsleb, and K. M. Carley. Socio-technical con-
gruence: a framework for assessing the impact of technical and work
dependencies on software development productivity. In Proceedings of
the Second ACM-IEEE international symposium on Empirical software
engineering and measurement, pages 2–11. ACM, 2008.

[3] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle. From
developer networks to verified communities: a fine-grained approach.
In Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pages 563–573. IEEE Press, 2015.

http://ossmeter.org/


[4] J. Lucena, J. Schneider, and J. A. Leydens. Engineering and sustainable
community development. Synthesis Lectures on Engineers, Technology,
and Society, 5(1):1–230, 2010.

[5] F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaidman, F. A. Fontana,
and R. Oliveto. How do community smells influence code smells? In
ICSE (Companion Volume), pages 240–241. ACM, 2018.

[6] F. Palomba, D. A. A. Tamburri, F. A. Fontana, R. Oliveto, A. Zaidman,
and A. Serebrenik. Beyond technical aspects: How do community smells
influence the intensity of code smells? IEEE transactions on software
engineering, 2018.

[7] D. Rombach and F. Seelisch. Formalisms in software engineering: Myths
versus empirical facts. In IFIP Central and East European Conference
on Software Engineering Techniques, pages 13–25. Springer, 2007.

[8] J. Rost and R. L. Glass. The dark side of software engineering: evil on
computing projects. John Wiley & Sons, 2011.

[9] K. Sigmund, C. Hauert, A. Traulsen, and H. De Silva. Social control and
the social contract: the emergence of sanctioning systems for collective

action. Dynamic Games and Applications, 1(1):149–171, 2011.
[10] D. Šmite and Z. Galviņa. Socio-technical congruence sabotaged by

a hidden onshore outsourcing relationship: lessons learned from an
empirical study. In International Conference on Product Focused
Software Process Improvement, pages 190–202. Springer, 2012.

[11] D. A. Tamburri, P. Lago, and H. Van Vliet. Uncovering latent social
communities in software development. IEEE software, 30(1):29–36,
2012.

[12] D. A. Tamburri, P. Lago, and H. v. Vliet. Organizational social structures
for software engineering. ACM Computing Surveys (CSUR), 46(1):3,
2013.

[13] W. Tracz. Lord of the files: essays on the social aspects of software
engineering by russel ovans. ACM SIGSOFT Software Engineering
Notes, 36(6):31–31, 2011.

[14] R. T. Watson, M.-C. Boudreau, and A. J. Chen. Information systems
and environmentally sustainable development: Energy informatics and
new directions for the is community. MIS quarterly, 34(1), 2010.


	Introduction
	Practical Recommendation
	FACT 1. Software Communities Have Types
	FACT 2. Types Influence Software Qualities
	FACT 3. Types narrow with Practitioners’ Experience
	FACT 4. Communities with more formal characteristics may result more often into abandon-ware
	FACT 5. Communities can be healthy and sustainable

	Conclusions
	References

