
An Exploratory Study on the Refactoring of Unit Test Files in
Android Applications

Anthony Peruma
axp6201@rit.edu

Rochester Institute of Technology
Rochester, New York, USA

Christian D. Newman
cnewman@se.rit.edu

Rochester Institute of Technology
Rochester, New York, USA

Mohamed Wiem Mkaouer
mwmvse@rit.edu

Rochester Institute of Technology
Rochester, New York, USA

Ali Ouni
ali.ouni@etsmtl.ca

ETS Montreal, University of Quebec
Montreal, Quebec, Canada

Fabio Palomba
fpalomba@unisa.it

SeSa Lab - University of Salerno
Fisciano (SA), Italy

ABSTRACT
An essential activity of software maintenance is the refactoring of
source code. Refactoring operations enable developers to take nec-
essary actions to correct bad programming practices (i.e., smells)
in the source code of both production and test files. With unit
testing being a vital and fundamental part of ensuring the quality
of a system, developers must address smelly test code. In this pa-
per, we empirically explore the impact and relationship between
refactoring operations and test smells in 250 open-source Android
applications (apps). Our experiments showed that the type of refac-
toring operations performed by developers on test files differ from
those performed on non-test files. Further, results around test smells
show a co-occurrence between certain smell types and refactorings,
and how refactorings are utilized to eliminate smells. Findings from
this study will not only further our knowledge of refactoring oper-
ations on test files, but will also help developers in understanding
the possible ways on how to maintain their apps.

KEYWORDS
Software maintenance and evolution, Unit testing, Test smells,
Refactoring, Android applications.

1 INTRODUCTION
Modern software systems shield their production code with a qual-
ity gate, ensuring that proposed changes undergo several testing
strategies before being shipped to end-users. Therefore, just like
production code, any upgrade to software requirements would even-
tually trigger the evolution of test code, ensuring it matches the
actual software behavior, and avoiding deprecation and decay [22].
Hence, it is essential that test file designs are of the highest quality
in order to ease their maintenance and evolution [17, 26]. The main
threat to test files design, just like production code, is the existence
of test smells; symptoms of bad programming practices [35]. Test
smells have been proven to threaten the quality of tests, making
them harder to understand and to maintain by increasing their
flakiness (i.e., tests that have a non-deterministic outcome), change-
and defect-proneness [25, 39, 40, 49]. Refactoring is one way to
remove smells. In this context, refactoring is a disciplined software
engineering practice to improve the internal design of software
systems without altering its external behavior; it involves locating

code smells and treating them as potential refactoring opportunities
[23, 32].

Although the refactoring of production code has been the sub-
ject of several studies, we still notice a lack of investigations on
whether and how developers typically refactor test code. Studying
refactoring practices may be particularly interesting in the context
of mobile applications (apps), which are the primary means for
billions of users to communicate and interact with external services
and other people [21]. There are over 2.5 million apps on the Google
Play store (as of December 2019) [1, 34]. As a matter of fact, it is
now, more than ever, essential for app developers to continually
maintain their apps in order to reduce the risk of end-users switch-
ing over to a competing app [24, 37, 38]. These apps, like traditional
systems, are also susceptible to smells in their source code, and
similarly, are impacted by the problems caused by bad smells [19].
At present, little knowledge is available on the impact of refactoring
activities on test smells present in the test files of Android apps.

In this paper, we initiate the research on refactoring test suites,
through performing an exploratory study on how developers refac-
tor test code. In this work, we monitor the refactoring activities of
test files, belonging to 250 open-source Android apps. Our mining
procedure allows us to determine the most frequent refactoring op-
erations typically applied to test code, as well as the most frequent
refactoring operations applied to production code. Thus, allowing
us to compare and contrast the types of refactoring operations ap-
plied in these different contexts. Our study also identifies the type
of refactoring operations that are eventually applied specifically to
smelly test files, and whether their application is responsible for
the removal of these smell instances.

1.1 Goal and Research Questions
The goal of this paper is to understand the relationship between
refactoring changes and their effect on test smells. The results of
this paper will serve to better understand how refactoring activities
influence the stability of test smells (e.g., whether they increase or
decrease in frequency) and ultimately recommend refactorings to
remove (or at least avoid adding) additional test smells. Hence, we
first explore the refactoring activities of Android app developers;
more specifically, we target the test suite of apps. Therefore, our
study aims at answering the following research questions:



Conference’17, July 2017, Washington, DC, USA Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba

• RQ1: What types of refactoring operations are applied
to unit test files compared to non-test files? This re-
search question looks into the type of refactoring operations
applied by developers to test and non-test files. We want to
know if developers treat test files differently from non-test
files when it comes to refactoring activities. Knowing if there
are differences in how developers refactor these two types of
files will help us to better tailor our research methodology.

• RQ2: What types of refactoring operations are fre-
quently applied to smelly test files?With this question,
we aim to understand what types of refactorings tend to co-
occur with a test smell. This research question will help us
identify developer patterns between refactoring operations
and test smells.

• RQ3: What kinds of refactorings are typically used to
remove test smells? It is generally known that refactoring
of source code is the mechanism to eliminate smells. From
this question, we aim to understand the types of refactoring
operations that are involved in the removal of test smells
from the test suite. Findings from this research question will
help us better focus our research on selecting refactoring
operations that improve the maintainability of test suites.

1.2 Study Contributions
From this study, our main contributions to the field can be summa-
rized as follows:

(1) An understanding and listing of refactoring operations ap-
plied to test suites of Android apps;

(2) Insights into the relationships that exist between refactoring
operations and test smells in the test suites of Android apps;

(3) A comprehensive dataset for replication and extension pur-
poses, available on our project website [2].

1.3 Paper Structure
The remaining of the manuscript is organized as follows. Section
2 reviews existing studies related to the definition, diffusion and
impact of smells on test code. Section 3 details our research method-
ology before discussing the results of our experiments in Section
4. Section 5 further discusses our findings along with our future
research directions. Any threats to the validity of our experiment
is reported in Section 6 before concluding in Section 7.

2 RELATEDWORK
While there is an ample amount of existing studies around test
smells, our related work is limited to studies that included aspects
of test code refactoring in the study of test smells.

van Deursen et al. [53] introduced the concept of test smells as
a result of studying refactoring of test code. The authors observed
that refactoring of test code is different from production code due
to test code having issues that are not usually found in production
code and hence requiring special handling. In [52], van Deursen
and Moonen proposed the concept of test first refactoring. This
approach calls for the analysis of the test code in order to identify
refactoring opportunities in the production code. Additionally, the
authors also proposed a taxonomy of refactoring operations for

test code. An approach to safely refactor test code was proposed by
Guerra and Fernandes [29]. The authors utilize graphical notation
to represent elements within a test suite along with a catalog of
15 test code specific refactorings to help developers understand
test code refactorings and also perform refactorings more safely.
Meszaros [35], provided developers with patterns and practices on
how to write maintainable tests. The author also highlighted smells
that are exclusive to test code along with instructions on how to
refactor such test cases.

In [39], Palomba and Zaidman investigated the impact of refac-
toring on flaky tests. Flaky tests are tests that can exhibit failing
and passing results with the same code. Through their study, the au-
thors observed that flaky tests are prevalent in systems with around
45% of test methods exhibiting a form of flakiness. The authors also
report that refactoring actions performed on the test code help in
resolving a majority of flaky tests. In addition to developing a test
smell detection tool, TestHound, Greiler et al. [27] also looked into
the types of refactoring that can be applied to correct the smelly
test code. Focusing on test fixture based smells, Greiler et al. [28]
investigated the evolution of the smell throughout the lifetime of
the project along with providing strategies and recommendations
for avoiding and correcting such smells. To better support develop-
ers in understanding the structure of their test suite with relation
to test smells, Breugelmans and Van Rompaey implemented a tool
called TestQ [18]. By providing a visualization of the test suite,
developers will be able to detect refactoring opportunities easily
and faster.

Bavota et al. [17] studied the impact of test smells with regards to
code comprehension. In their study, the authors refactored smelly
test code to remove the test smell. The authors report that par-
ticipants in their study reported a negative code comprehension
experience when performing maintenance activities on the smelly
code. A developer survey conducted by Tufano et al. [51]. It was
interesting to note that the participants of the survey did not per-
ceive test smells as problematic. Additionally, the participants were
of the view that refactoring of the smelly test code would not be
advantageous to the design of the test suite. A study on developer
reactions to test smells was conducted by Schvarcbacher et al. [47].
In this study, the authors integrate the same test smell detection
tool used in our study into a code quality monitoring system. Pre-
liminary results from their study showed that while developers
agree that the smells are problematic, they prefer to refactor their
test suites only to correct a select set of the smell types.

Finally, as our study focuses on Android apps, we looked into
studies that investigated the refactoring of such systems. We ob-
served that the majority of the studies do not focus on granular
source code refactoring operations. Instead, the work mostly re-
volves around API level refactoring. In other words, the studies
looked at mechanisms to improve the quality characteristics of the
apps (such as energy efficiency, concurrency, etc.) by recommending
alternate API’s or design patterns ([16, 20, 30, 33, 34, 55]).

From a refactoring operation perspective, Park et al. [41] applied
refactoring operations on source code to investigate if the oper-
ations help with the energy consumption of mobile devices. The
authors observed that only a partial set of refactoring operations
help conserve energy; these findings were later extended by Sahin
et al. [46] in the context of an empirical study on the impact of the



An Exploratory Study on the Refactoring of Unit Test Files in Android Applications Conference’17, July 2017, Washington, DC, USA

Table 1: Summary of the different test smell types exhibited by files contained in the dataset [43] used in our study.

Test Smell Detection Rule

Assertion Roulette A test method contains more than one assertion statement without an explanation/message (parameter in the assertion method)
Conditional Test Logic A test method that contains one or more control statements (i.e., if, switch, conditional expression, for, foreach and while statement)
Constructor Initialization A test class that contains a constructor declaration
Default Test A test class is named either ‘ExampleUnitTest’ or ‘ExampleInstrumentedTest’
Duplicate Assert A test method that contains more than one assertion statement with the same parameters
Eager Test A test method contains multiple calls to multiple production methods
Empty Test A test method that does not contain a single executable statement
Exception Handling A test method that contains either a throw statement or a catch clause
General Fixture Not all fields instantiated within the setUp method of a test class are utilized by all test methods in the same test class
Ignored Test A test method or class that contains the @Ignore annotation
Lazy Test Multiple test methods calling the same production method
Magic Number Test An assertion method that contains a numeric literal as an argument
Mystery Guest A test method containing object instances of files and databases classes
Redundant Print A test method that invokes either the print or println or printf or write method of the System class
Redundant Assertion A test method that contains an assertion statement in which the expected and actual parameters are the same
Resource Optimism A test method utilizes an instance of a File class without calling the method exists(), isFile() or notExists() methods of the object
Sensitive Equality A test method invokes the toString() method of an object
Sleepy Test A test method that invokes the Thread.sleep() method
Unknown Test A test method that does not contain a single assertion statement and @Test(expected) annotation parameter

Dataset of 
test files & 
smells in 
Android 

apps

Detection of 
refactoring 

operations using 
RefactoringMiner

Dataset of 
refactoring 
operations

Analysis of results

Figure 1: Overview of our methodology.

Fowler’s refactoring actions [23]. Later, Palomba et al. [36] focused
on refactoring operations specifically designed to remove Android-
specific code smells. They reported that (i) methods of mobile apps
affected by energy-specific code smells consume notably more than
methods not affected by any design problem and (ii) the refactor-
ing operations associated to these smells can increase the energy
efficiency of mobile applications in most cases.

In a preliminary study of refactoring operations occurring in An-
droid apps, Peruma [42], observed that rename operations are the
most common type of refactoring applied to source code. Further-
more, by studying the commit log messages, the author observed
that app developers perform refactorings to improve code readabil-
ity, fix defects, and enhance system design.

3 METHODOLOGY
The general methodology of our study is depicted in Figure 1, and
consists of utilizing a mining tool for the detection of refactoring

operations from an existing dataset of unit test files and smells in
Android apps.

We utilized the dataset of Android test smells generated from
our previous study [43] for the experiments in this study. The
dataset contains details of 19 different types of test smells that were
prevalent in the Junit-based unit test files of 656 open-source An-
droid apps. The dataset captures the types of test smells that occur
throughout the history of each unit test file throughout the lifetime
of the project. In addition to test files, the dataset also contains the
production file associated with the test file (where applicable). In
total, 206,598 JUnit based unit test files were processed and resulted
in the analysis of 1,187,055 unit test methods. Table 1 provides a
summary of the types of test smells that are part of the dataset.
Please refer to [43] for a more detailed definition of these smells.

We utilized the tool, RefactoringMiner [50], to detect the different
refactoring operations applied by developers to the source code. To
detect refactoring operations, RefactoringMiner enumerates over
the entire commit history of a project and compares the changes
made to the source code. Using a pre-defined set of refactoring rules,
RefactoringMiner checks if the changes made to the source file can
be categorized as a refactoring. The version of RefactoringMiner
utilized for this study can detect 39 types of refactoring operations.
We executed RefactoringMiner on the set of apps contained in our
dataset of test smells. In total, we detected 614 apps that underwent
refactorings. After the removal of outliers (via the Tukey Fences
approach [31]), each app, exhibited on average 321.4 refactoring op-
erations. A statistical summary of these results is provided in Table
2. It is important to highlight that the selection of RefactoringMiner
was based on two observations: on the one hand, it represents state
of the art in the field of refactoring detection [54]; on the other
hand, its empirical validation [50] showed that the tool is able to
reconstruct refactoring operations with an F-Measure close to 93%,
hence being particularly suitable in the context of a large-scale
mining investigations like the ours.



Conference’17, July 2017, Washington, DC, USA Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba

Table 2: Statistical summary of refactoring operations asso-
ciated with each app in the dataset.

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 33 139 321.4 466 1673

Table 3: Statistical summary of refactoring operations asso-
ciated with each app for test and non-test files.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Refactorings applied to test files

1 2 7 13.99 19 71
Refactorings applied to non-test files

1 146.5 439.5 743.8 1161.2 3278.0

4 EXPERIMENTAL RESULTS
From the 614 apps that underwent refactorings, only 250 apps con-
tained test files that underwent a refactoring. In total, we observed
that only 4,709 of test files that were part of the 250 apps were
refactored by developers. For the 250 apps that do contain test files,
we looked at the distribution of refactorings occurring in these test
files. As shown in Table 3, after the removal of outliers (via the
Tukey Fences approach [31]), on average, each app had 13.99 refac-
toring operations performed on test files. However, the average for
the same set of apps based on the refactorings applied to non-test
files is much larger. Going forward, our experiments will utilize
these 250 apps to answer our research questions.

4.1 RQ1: What types of refactoring operations
are applied to unit test files compared to
non-test files?

In total, we detected 34 different types of refactoring operations
that developers apply to test files. The most common type is Rename
Method, which occurs approximately 19.81% over the total number
of applied refactorings in the dataset. Due to space constraints, we
present the top five occurring refactoring operations in Table 4.
However, it is interesting to note that these five operations account
for almost 65% of the operations applied by developers. Furthermore,
the majority of the refactoring operations are clustered around
data type changes and identifier renames. Approximately 38.84%
of operations are renames, while type changes account for 34.87%;
the remaining operations account for 26.29%. The high occurrence
of renames is not surprising, as prior research has shown that
renames are one of the most common types of refactorings applied
by developers to source code [44, 45, 54]. However, other than for
API migration-related studies, at present, research on type change
refactorings are not yet available.

For our comparison with non-test files, we looked at the remain-
ing set of source files in the dataset that underwent a refactoring.
All 39 refactoring operations that were supported by the version
of RefactoringMiner used in this study were detected in this set of
source code files. Interestingly, we observed thatMove Classwas the
most popular refactoring operation for Android developers, occur-
ring 13.33% of the time. However, unlike the test files, the top five

Table 4: Refactoring operations applied to test files.

Refactoring Operation Count Percentage

Rename Method 1,511 19.81%
Change Variable Type 1,452 19.03%
Rename Variable 803 10.53%
Change Attribute Type 773 10.13%
Extract Method 426 5.58%
Other Operations 2,664 34.29%
Total 7,629 100%

Table 5: Refactoring operations applied to non-test files.

Refactoring Operation Count Percentage

Move Class 23,180 13.33%
Change Parameter Type 14,178 8.15%
Change Attribute Type 12,921 7.43%
Rename Method 12,074 6.94%
Rename Parameter 11,299 6.50%
Other Operations 100,249 57.65%
Total 173,901 100%

refactorings only accounted for 42.35% of the refactorings. Again,
looking at the clustering of rename and type change refactorings,
we observed that 28.94% of the refactorings were clustered under
renames, while 27.93% of refactorings were changes to the type of
the identifier. The remaining refactorings accounted for 43.13% of
the operations performed by developers. Additionally, we observed
that four out of the top five test file based refactoring operations
are related to methods or identifiers contained within methods. For
non-test files, only three of the top five refactorings are related to
methods, while the remaining are at the class-level.

Interestingly, for test files, if we exclusively look at refactorings
applied to methods and classes, we notice that approximately 8.02%
of these refactorings are applied to classes while the remaining
91.98% of operations are applied to methods. When it comes to
non-test files, the distribution is different - method refactorings
account to 49.27%, with 50.73% of the operations related to classes.

Finally, the entire list of refactoring operations applied to test
and non-test files are available on our project website [2].

Summary. We have shown that the types of refactorings
applied to test and non-test files in Android apps are dif-
ferent. Non-test files are subject to more design level types
of refactorings (e.g., Move Class, while test files tend to
undergo more renames (e.g., Rename Method, Rename Vari-
able) and data type changes (e.g., Change Variable Type)
to identifiers. Furthermore, in test files, developers ap-
ply more refactorings to methods or other identifiers part
of/contained within methods than to classes or attributes.



An Exploratory Study on the Refactoring of Unit Test Files in Android Applications Conference’17, July 2017, Washington, DC, USA

4.2 RQ2: What types of refactoring operations
are frequently applied to smelly test files?

To answer this research question, we extracted the list of smelly
test files from the original dataset and then compared the results
to the dataset of refactoring operations. We observed that 4,589
test files that had one or more smells had undergone a refactoring.
To understand the types of refactorings that tend to co-occur with
a smelly test file, we first extracted test files that exhibited only
one type of smell and then looked at the refactorings applied to
the file (if any). Due to space constraints, we present only a few of
the results; the complete listing is available on our project website.
Table 6 shows the frequency of co-occurrence of a subset of test
smells and refactoring operations.

Looking at test files that exhibit the Assertion Roulette smell, we
see the majority of refactoring operations performed by developers
are related to a change in the data type of a variable within a method
(i.e., Change Variable Type). Interestingly, the Extract Method refac-
toring frequently co-occurs with Lazy Test and Eager Test smells.
Both these smells are due to developers violating testing best prac-
tices when calling methods in the production class/file. Eager Test
is due to developers exercising multiple production methods in a
single test method, while Lazy Test is when multiple test methods
invoke the same production method. Most likely, the developer
performs extensive design-related changes to the production code,
which results in similar changes to the test suite.

Another interesting finding is the co-occurrence of the smell
General Fixture with the refactoring operation Change Attribute
Type. This particular smell arises when the test case fixture is too
general, and the test methods only access part of it. Hence a de-
veloper, performing a type change to an attribute in the same test
suite, should be mindful that there is a possibility of the attribute
contributing to the emission of a General Fixture smell, if the same
attribute is utilized in the setUp() method and not utilized by all
test methods in the file. Looking at the smell Redundant Assertion,
we see that Move Method is a frequent refactoring operation that
co-occurs with this smell. Redundant Assertion is caused when test
methods contain assertion statements that are either always true
or false. This smell is mostly introduced due to mistakes made by
the developer. A Move Method can be thought of as a design-level
related refactoring and would most likely be more complicated
to perform given the decisions a developer would need to make.
Hence, there is a likely chance of developers forgetting to remove
debugging related code such as those that result in a Redundant
Assertion smell when implementing and verifying the Move Method
refactoring.

Summary.We observed that there exist certain test smells
and refactoring operations that co-occur frequently. For
instance, the smells Lazy Test and Eager Test frequently
co-occur with an Extract Method refactoring operation.

4.3 RQ3: What kinds of refactorings are
typically used to remove test smells?

To answer this question, we looked at the lifetime history for each
smelly test file. For each commit instance of such a file, we compared

Table 6: Frequently co-occurring test smells and refactor-
ings.

Co-occurring Count Percentage
Smell Type

Refactoring
Operation

Assertion Roulette Change Variable Type 141
(Total: 266) 53.01%

Eager Test Extract Method 14
(Total: 33) 42.42%

Lazy Test Extract Method 20
(Total: 66) 30.30%

General Fixture Change Attribute Type 8
(Total: 21) 38.10%

Redundant Assertion Move Method 9
(Total: 31) 29.03%

if the total smells exhibited by the file reduced and the amount by
which it reduced. Next, we looked at the refactoring operations
applied by the developer on the instance of the file that showed a
reduction in smell count. From the dataset, we observed that 481
smelly test files that showed a reduction in smells also underwent
a refactoring. On average, we observed that smells exhibited in a
test file tend to reduce by 1.30 smells on average when the file is
refactored. These same files, on average, exhibited around 2.98 test
smells. Next, we looked at the number of refactoring operations
applied to these test files. On average, 2.12 refactoring operations
are applied to a smelly test file that results in a reduction in the
smell count of the same file. Table 7 shows a statistical summary.

We also looked at the different combinations of smell reductions
and refactoring operations applied to a smelly file. We observed that
that the most frequent combination is the application of a single
refactoring operation that would cause a single reduction of a smell
type. This particular combination occurs 38.46% of the time. The
next highest combination, at 12.89%, is the reduction of one smell
type through the application of two refactoring operations.

For the single smell reduction, single refactoring combination,
as shown in Table 8, we observed that the refactoring operation
Change Variable Type is frequently involved in commits that also
show a reduction in smell counts. Furthermore, from Table 9, the
smell Eager Test is frequently resolved by developers when per-
forming a single refactoring operation.

Due to space constraints, we report on a select set of observa-
tions of the commits that were involved in a single smell reduc-
tion, single refactoring combination. With regards to the Eager Test
smell, when we look at commit [3], we observed that the method
testHumanDistance() was exhibiting an Eager Test smell as this
method was accessing a production method more than once. Due
to a design-related change (i.e., “move...code to own class”), the
developer eliminates this smell from the test file by performing a
Move Method on the smelly test method. In another instance [4],
the developer corrects an Eager Test smell by performing a Change
Variable Type. This action was performed by the developer to “fix
unit test” in which a method associated with the new variable type,
in the test method, is utilized instead of a method associated with
the production object.



Conference’17, July 2017, Washington, DC, USA Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba

Looking at the Assertion Roulette smell, in commit [5], the de-
veloper performs a Change Variable Type on an object that was
being used in an assertion method that lacked an explanation
message. This refactoring action, performed by the developer to
address “...lint recommendations”, resulted in the developer re-
moving the smelly assertion method from the test method. We
also observed a Rename Method also utilized to resolve an As-
sertion Roulette smell as part of a bug fix. In commit [6], we
observed that the developer renames test methods to be more
specific in their behavior (e.g., shouldSanitizeInputData to
shouldSanitizeInputDataEmail) and, as a result, removes asser-
tion statements that do not reflect the behavior associated with the
name of the test method.

We also noticed that the occurrence of Extract Method with the
removal of the smell Conditional Test Logic is popular in our dataset.
In [7, 8], we see developers extracting code containing a loop out
of a test method. Looking at the messages associated with these
two commits, we are made to understand that the code changes
were made as part of either a change to or addition of functionality.
In other words, the developers to do not explicitly state that their
goal is to resolve the smell (or improve code comprehension).

The use of RenameMethod helps alleviate the smellUnknown Test.
In [9], the developer renames the test method to reflect its purpose
better (testGetCustomFields to texttttestGetNullCustomFields)
and includes an assertion statement to this effect. In [10], the de-
veloper has a test method, testComplete, without an assertion
statement. By default, JUnit considers methods that start with the
term ‘’test’ as a test method and would automatically execute the
method when the test suite is run. However, looking at the commit
message, we see that the developer never intended this method to
be a test method and after realizing that, “the name ‘testComplete’
will cause test runner to actually execute it as a test case, which is
not the intention” renamed the method to notifyComplete.

We have also seen the use of Change Attribute Type involved in
the indirect removal of certain smell types. For example in commit
[11], by applying a Change Attribute Type operation, the developer
eliminates the Magic Number Test smell from a test method. How-
ever, looking at the code, it seems that this co-occurrence is by
chance; the replacement of magic numbers with constants is most
likely due to adhering to coding standards to improve code compre-
hension. A similar pattern is seen in commit [12]. In this example,
the smell Ignored Test is removed in the same commit in which
the developer applies the same refactoring operation. However, a
review of the code and commit message shows that resolving of
this code is not related to refactoring operation. In another exam-
ple, commit [13] shows a co-occurrence with the elimination of
the smell Redundant Print and the refactoring operation Replace
Variable With Attribute. However, looking at the code and commit
message, we see that while the smell is indeed removed, it is de-
batable if the refactoring operation was solely responsible for the
removal. As the main purpose of the commit was to fix a defective
test, it is not possible to determine if the developer determined that
the print statement in the test method was redundant and needed to
be removed or if the refactoring operation resulted in the developer
being forced to remove the statement to avoid a compilation or
runtime error.

Table 7: Statistical summary of smell reductions and refac-
toring operations associated with each refactored smelly
file.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Amount of smells reduced in smelly file

1 1 1 1.30 2 3
Amount of refactoring operations applied to smelly file

1 1 1 2.12 3 8

Table 8: Top five refactoring operations that co-occur with
the reduction of a single smell.

Refactoring Operation Count Percentage

Change Variable Type 65 35.14%
Rename Method 34 18.38%
Change Attribute Type 14 7.57%
Extract Method 14 7.57%
Move Method 13 7.03%
Other Operations 45 24.32%
Total 185 100%

Looking at commit [14], we see that even though Rename Variable
co-occurs with the removal of the smell Constructor Initialization,
the refactoring operation does not contribute to the removal of the
smell. From the code and commit message, we see that the refactor-
ing operation is more to do with adhering to coding standards while
the smell removal is due to the test being “Upgrade(d) test to JUnit
4.” In commit [15], we observed that the smell General Fixture is
removed when a Move Attribute operation is applied to the file. On
observation of the code, we see that the refactoring operation did
indeed resolve the smell as the attribute that was moved was being
utilized within the test fixture method, but not all test methods
were using it; hence, the existence of the smell.

From this RQ, we have seen that there exist scenarios where a
test smell is eliminated when a refactoring operation is applied to a
test file. On the surface, one might assume that developers perform
refactoring operations to fix smelly code. However, on analysis
of the code, this is not entirely true. As an exploratory study, our
findings in this research question shows that more research is
needed in this area. We have shown that refactorings do play a part
in correcting smelly code in test files; however, more in-depth, and
developer supported, studies are needed to fully understand how
refactorings can be exclusively utilized to fix smelly code.

Summary. Despite their low frequency, there exist sce-
narios where refactoring operations are utilized to correct
a test smell. However, these refactorings are applied by de-
velopers for reasons other than for the correction of smells;
the fixing of smells is merely a byproduct. At most, a single
smell is corrected by the application of a single refactoring
with Change Variable Type being one of the most common
refactorings applied when a smell is removed.



An Exploratory Study on the Refactoring of Unit Test Files in Android Applications Conference’17, July 2017, Washington, DC, USA

Table 9: Top five smell types that are eliminated when a sin-
gle refactoring is applied to a commit.

Smell Type Count Percentage

Eager Test 71 38.38%
General Fixture 16 8.65%
Lazy Test 13 7.03%
Magic Number Test 13 7.03%
Conditional Test Logic 12 6.49%
Other Operations 60 32.43%
Total 185 100%

5 DISCUSSION & FUTURE DIRECTION
RQ1 showed us that developers treat test and non-test files differ-
ently with regards to refactoring operations. For instance, non-test
files undergo more design/structure level types of refactorings, un-
like test files that are limited to somewhat cosmetic updates such
as renames and type changes. Such findings should not be entirely
surprising as test cases (i.e., test methods) are meant to exercise a
minimal unit of source code and, therefore, would mostly require
changes to data types and identifier names to match the new design
level changes implemented in the non-test files. The high volume
of refactorings being applied to methods within test files should
not be surprising as methods are the key components in a test suite.
From these findings, developers would now be better prepared to
understand the level of rework that would be involved when it
comes to refactoring (non-)test files and hence aide in better project
estimation planning. Future work in this direction can lead to more
specialized refactoring tools for test and non-test source code.

In RQ2, we explored the co-occurrence of refactorings and
smells. Our findings showed interesting patterns, such as a high
co-occurrence between method based refactorings and test smells.
Based on the phenomenon that most refactorings are applied to test
methods, developers should focus on test smells being exhibited
by the methods they are refactoring. From our findings, we envi-
sion that app developers are now better prepared when refactoring
test files with regards to smells. Developers will be aware of the
most likely smell that exists or being introduced into the test suite
when performing a refactoring. Taking this step further, researchers
and/or tool vendors can be better equipped to offer an automated
resolving of smells when a developer applies a specific refactoring
to a test.

While a previous study [43] has shown that the volume of smells
exhibited by a test file tends to remain steady over the lifetime of
the file, from RQ3—though low in volume—we observed situations
where developers resolve smells exhibited by test files. Even though
refactoring is supposed to remove smells, not all developers refactor
their code with the aim of smell removal; the removal is mostly as
a result of a byproduct of refactoring the test suite. Research by
Tufano et al. [51] and Peruma et al. [43] showed that not all devel-
opers perceive all test smells as problematic. Hence, the refactoring
operations performed on test files are mostly related to other types
of development activities such as fixing issues, adhering to cod-
ing standards, and incorporating new/updated functionality. Even
though we did notice patterns such as Extract Method resolving the

Conditional Test Logic smell, more research is needed into this area,
especially with developer involvement, to identify false-positive
patterns and explore the developer’s intention on proactively fixing
smells with refactoring operations.

6 THREATS TO VALIDITY
A critical threat to this study is the domain for this study. This study
is singularly focused onAndroid apps andmay not be representative
of non-mobile systems. However, given the volume of apps and
ease of app development, it is important for app developers to be
aware of the type of refactoring that they will be undertaking on
their app during maintenance activities. Furthermore, as the test
files are JUnit based, non-mobile developers (and researchers) can
use our findings as a starting point when maintaining the test suite
of non-mobile systems.

The original dataset can also be considered as a threat. However,
the dataset has been used in a prior, published study on Android test
suites [43]. Furthermore, at present, there does not exist any other
datasets that focus on the test suite of Android apps. Additionally,
the smell detection tool used to construct the dataset has also been
utilized in another study on test smells [47]. The correctness of
RefactoringMiner in the identification of refactoring operations
is also a threat to this study. However, prior studies [48, 50] have
shown that RefactoringMiner has high precision and recall scores
when compared to similar open-source tools.

Finally, it is worth remarking that the conclusions drawn in our
study are based on statistical data and co-occurrence analysis. As
such, our study should be considered as a preliminary investigation
into the way mobile developers perform refactoring operations.
Hence, our findings should be complemented with further insights
in order to shed light on the rationale pushing developers to perform
such operations on test files, or when tests are affected by design
issues. This kind of analysis is already part of our future research.

7 CONCLUSION & FUTUREWORK
In this study, we explored the refactoring operations applied by An-
droid app developers on their apps. We utilized an existing dataset
of open-source app test files, and test smells for our study. Ad-
ditionally, we used RefactoringMiner to identify the refactoring
operations in the dataset. Our analysis of 250 projects showed us
that app developers apply a different set of refactorings to test and
non-test source code files. Furthermore, we presented the common
refactorings that co-occur with test smells, and finally, we looked
at the smells that are resolved when a test file is refactored.

Going forward, our future work in this area will involve a more
deep-dive into a select set of refactoring operations (i.e., operations
that were frequently applied by developers) applied to test files.
Additionally, we will also be looking at the type (i.e., experience) of
developers that apply these types of refactorings and the specific
reasons pushing them to apply certain refactoring operations.

REFERENCES
[1] [n.d.]. https://www.statista.com/statistics/266210/number-of-available-

applications-in-the-google-play-store/.
[2] [n.d.]. https://testsmells.github.io/pages/research/refactoring.html.
[3] [n.d.]. https://github.com/cgeo/cgeo/commit/61b3c77#diff-

d2ce8bcdab02bf8d70b96dc0e8956c1b.

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://testsmells.github.io/pages/research/refactoring.html
https://github.com/cgeo/cgeo/commit/61b3c77#diff-d2ce8bcdab02bf8d70b96dc0e8956c1b
https://github.com/cgeo/cgeo/commit/61b3c77#diff-d2ce8bcdab02bf8d70b96dc0e8956c1b


Conference’17, July 2017, Washington, DC, USA Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba

[4] [n.d.]. https://github.com/open-keychain/open-keychain/commit/5d6c2d9#diff-
17c72e4451fe562348f9c2a55fd0b257.

[5] [n.d.]. https://github.com/tilal6991/HoloIRC/commit/7b9405f#diff-
37574423bd41b688fe5ef4f3ecaacc44.

[6] [n.d.]. https://github.com/jberkel/sms-backup-plus/commit/7884ec6#diff-
22a08f2f0c231024bf25a4da696a40ef.

[7] [n.d.]. https://github.com/rtyley/agit/commit/6fd4b1c#diff-
fb8ec323f48634266fb37e91894eb5c7.

[8] [n.d.]. https://github.com/VREMSoftwareDevelopment/WiFiAnalyzer/commit/
84ded72#diff-8380d0cb5481ea67fa154bd13572ebe3.

[9] [n.d.]. https://github.com/wordpress-mobile/WordPress-Android/commit/
9c9691a#diff-ec439e6e6d7cb33ad174cd3e5b6da9bd.

[10] [n.d.]. https://github.com/CyanogenMod/android_packages_apps_Browser/
commit/0622f96#diff-5feae667a2375978cec3bc0cfc9efd3b.

[11] [n.d.]. https://github.com/aragaer/jtt_android/commit/4a7e298#diff-
6193986e47a81e5e53e7f13906c54095.

[12] [n.d.]. https://github.com/google/iosched/commit/26f90d3#diff-
a860a9085797f69ceab90031a94ff63f.

[13] [n.d.]. https://github.com/k3b/APhotoManager/commit/6bcaf34#diff-
21b786b93511440d8bfc28d560b58b88.

[14] [n.d.]. https://github.com/wikimedia/apps-android-wikipedia/commit/7895e4b#
diff-fc2ee68efe30e2b8ae06036781654774.

[15] [n.d.]. https://github.com/andstatus/andstatus/commit/da49061#diff-
d7a31ea4c55bae472368bccf882e4e0a.

[16] Abhijeet Banerjee and Abhik Roychoudhury. 2016. Automated Re-Factoring
of Android Apps to Enhance Energy-Efficiency. In Proceedings of the Interna-
tional Conference on Mobile Software Engineering and Systems (Austin, Texas)
(MOBILESoft ’16). Association for Computing Machinery, New York, NY, USA.

[17] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. 2015. Are test smells really harmful? An empirical study. Empirical
Software Engineering 20, 4 (2015), 1052–1094.

[18] Manuel Breugelmans and Bart Van Rompaey. 2008. TestQ: Exploring structural
and maintenance characteristics of unit test suites. In IN WASDETT-1.

[19] Suelen Goularte Carvalho, Maurício Aniche, Júlio Veríssimo, Rafael S Durelli,
and Marco Aurélio Gerosa. 2019. An empirical catalog of code smells for the
presentation layer of Android apps. Empirical Software Engineering 24, 6 (2019).

[20] Luis Cruz, Rui Abreu, and Jean-Noël Rouvignac. 2017. Leafactor: Improving
Energy Efficiency of Android Apps via Automatic Refactoring. In Proceedings
of the 4th International Conference on Mobile Software Engineering and Systems
(Buenos Aires, Argentina) (MOBILESoft ’17). IEEE Press, 205–206.

[21] Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy Zaid-
man, and Andrea De Lucia. 2017. Software-based energy profiling of android
apps: Simple, efficient and reliable?. In 2017 IEEE 24th international conference on
software analysis, evolution and reengineering (SANER). IEEE, 103–114.

[22] Barrett Ens, Daniel Rea, Roiy Shpaner, Hadi Hemmati, James E Young, and
Pourang Irani. 2014. Chronotwigger: A visual analytics tool for understanding
source and test co-evolution. In 2014 Second IEEE Working Conference on Software
Visualization. IEEE, 117–126.

[23] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[24] Giovanni Grano, Adelina Ciurumelea, Sebastiano Panichella, Fabio Palomba, and
Harald C Gall. 2018. Exploring the integration of user feedback in automated
testing of android applications. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 72–83.

[25] Giovanni Grano, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Harald C
Gall. 2019. Scented since the beginning: On the diffuseness of test smells in
automatically generated test code. Journal of Systems and Software 156 (2019).

[26] Giovanni Grano, Fabio Palomba, and Harald C Gall. 2019. Lightweight assessment
of test-case effectiveness using source-code-quality indicators. IEEE Transactions
on Software Engineering (2019).

[27] M. Greiler, A. van Deursen, and M. Storey. 2013. Automated Detection of Test
Fixture Strategies and Smells. In 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation. 322–331.

[28] M. Greiler, A. Zaidman, A. van Deursen, and M. Storey. 2013. Strategies for
avoiding text fixture smells during software evolution. In 2013 10th Working
Conference on Mining Software Repositories (MSR). 387–396.

[29] E. M. Guerra and C. T. Fernandes. 2007. Refactoring Test Code Safely. In Interna-
tional Conference on Software Engineering Advances (ICSEA 2007). 44–44.

[30] G. Hecht, R. Rouvoy, N. Moha, and L. Duchien. 2015. Detecting Antipatterns
in Android Apps. In 2015 2nd ACM International Conference on Mobile Software
Engineering and Systems. 148–149. https://doi.org/10.1109/MobileSoft.2015.38

[31] A.R. Jones. 2018. Probability, Statistics and Other Frightening Stuff. Taylor &
Francis.

[32] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A Field
Study of Refactoring Challenges and Benefits. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering (Cary,
North Carolina) (FSE ’12). Association for Computing Machinery.

[33] Y. Lin, S. Okur, and D. Dig. 2015. Study and Refactoring of Android Asynchronous
Programming (T). In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 224–235. https://doi.org/10.1109/ASE.2015.50

[34] Ivano Malavolta, Roberto Verdecchia, Bojan Filipovic, Magiel Bruntink, and
Patricia Lago. 2018. How Maintainability Issues of Android Apps Evolve. In 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME).

[35] G. Meszaros. 2007. xUnit Test Patterns: Refactoring Test Code. Pearson Education.
[36] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Andy Zaidman, and Andrea

De Lucia. 2019. On the impact of code smells on the energy consumption of
mobile applications. Information and Software Technology 105 (2019), 43–55.

[37] Fabio Palomba, Mario Linares-Vásquez, Gabriele Bavota, Rocco Oliveto, Massim-
iliano Di Penta, Denys Poshyvanyk, and Andrea De Lucia. 2018. Crowdsourcing
user reviews to support the evolution of mobile apps. Journal of Systems and
Software 137 (2018), 143–162.

[38] Fabio Palomba, Pasquale Salza, Adelina Ciurumelea, Sebastiano Panichella, Har-
ald Gall, Filomena Ferrucci, and Andrea De Lucia. 2017. Recommending and local-
izing change requests for mobile apps based on user reviews. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, 106–117.

[39] F. Palomba and A. Zaidman. 2017. Does Refactoring of Test Smells Induce Fixing
Flaky Tests?. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 1–12. https://doi.org/10.1109/ICSME.2017.12

[40] Fabio Palomba and Andy Zaidman. 2019. The smell of fear: on the relation
between test smells and flaky tests. Empirical Software Engineering (Oct 2019).

[41] Jae Jin Park, Jang-Eui Hong, and Sang-Ho Lee. 2014. Investigation for Software
Power Consumption of Code Refactoring Techniques.. In SEKE. 717–722.

[42] A. Peruma. 2019. A Preliminary Study of Android Refactorings. In 2019 IEEE/ACM
6th International Conference on Mobile Software Engineering and Systems (MO-
BILESoft). 148–149. https://doi.org/10.1109/MOBILESoft.2019.00030

[43] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2019. On the Distribution of Test Smells
in Open Source Android Applications: An Exploratory Study. In Proceedings
of the 29th Annual International Conference on Computer Science and Software
Engineering (Toronto, Ontario, Canada) (CASCON ’19). IBM Corp., USA, 193–202.

[44] Anthony Peruma, Mohamed Wiem Mkaouer, Michael J. Decker, and Christian D.
Newman. 2018. An Empirical Investigation of How and Why Developers Re-
name Identifiers. In Proceedings of the 2nd International Workshop on Refactoring
(Montpellier, France) (IWoR 2018). Association for Computing Machinery, New
York, NY, USA, 26–33. https://doi.org/10.1145/3242163.3242169

[45] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman. 2019. Contex-
tualizing Rename Decisions using Refactorings and Commit Messages. In 2019
19th International Working Conference on Source Code Analysis and Manipulation
(SCAM). 74–85. https://doi.org/10.1109/SCAM.2019.00017

[46] Cagri Sahin, Lori Pollock, and James Clause. 2014. How do code refactorings
affect energy usage?. In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. 1–10.

[47] Martin Schvarcbacher, Davide Spadini, Magiel Bruntink, and Ana Oprescu. 2019.
Investigating developer perception on test smells using better code hub-Work in
progress. In 2019 Seminar Series on Advanced Techniques and Tools for Software
Evolution, SATTOSE 2019.

[48] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We Refac-
tor? Confessions of GitHub Contributors. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (Seattle,
WA, USA) (FSE 2016). Association for Computing Machinery.

[49] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli. 2018. On
the Relation of Test Smells to Software Code Quality. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 1–12.

[50] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian,
and Danny Dig. 2018. Accurate and Efficient Refactoring Detection in Commit
History. In Proceedings of the 40th International Conference on Software Engineering
(Gothenburg, Sweden) (ICSE ’18). Association for Computing Machinery, 12.

[51] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. An Empirical Inves-
tigation into the Nature of Test Smells. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (Singapore, Singa-
pore) (ASE 2016). Association for Computing Machinery, New York, NY, USA.

[52] Arie Van Deursen and LeonMoonen. 2002. The video store revisited–thoughts on
refactoring and testing. In Proc. 3rd Int’l Conf. eXtreme Programming and Flexible
Processes in Software Engineering. Citeseer, 71–76.

[53] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. 2001.
Refactoring test code. In Proceedings of the 2nd international conference on extreme
programming and flexible processes in software engineering (XP). 92–95.

[54] Carmine Vassallo, Giovanni Grano, Fabio Palomba, Harald C Gall, and Alberto
Bacchelli. 2019. A large-scale empirical exploration on refactoring activities in
open source software projects. Science of Computer Programming 180 (2019).

[55] Ying Zhang, Gang Huang, Xuanzhe Liu, Wei Zhang, Hong Mei, and Shunxi-
ang Yang. 2012. Refactoring Android Java Code for On-Demand Computation
Offloading. SIGPLAN Not. 47, 10 (Oct. 2012), 233–248.

https://github.com/open-keychain/open-keychain/commit/5d6c2d9#diff-17c72e4451fe562348f9c2a55fd0b257
https://github.com/open-keychain/open-keychain/commit/5d6c2d9#diff-17c72e4451fe562348f9c2a55fd0b257
https://github.com/tilal6991/HoloIRC/commit/7b9405f#diff-37574423bd41b688fe5ef4f3ecaacc44
https://github.com/tilal6991/HoloIRC/commit/7b9405f#diff-37574423bd41b688fe5ef4f3ecaacc44
https://github.com/jberkel/sms-backup-plus/commit/7884ec6#diff-22a08f2f0c231024bf25a4da696a40ef
https://github.com/jberkel/sms-backup-plus/commit/7884ec6#diff-22a08f2f0c231024bf25a4da696a40ef
https://github.com/rtyley/agit/commit/6fd4b1c#diff-fb8ec323f48634266fb37e91894eb5c7
https://github.com/rtyley/agit/commit/6fd4b1c#diff-fb8ec323f48634266fb37e91894eb5c7
https://github.com/VREMSoftwareDevelopment/WiFiAnalyzer/commit/84ded72#diff-8380d0cb5481ea67fa154bd13572ebe3
https://github.com/VREMSoftwareDevelopment/WiFiAnalyzer/commit/84ded72#diff-8380d0cb5481ea67fa154bd13572ebe3
https://github.com/wordpress-mobile/WordPress-Android/commit/9c9691a#diff-ec439e6e6d7cb33ad174cd3e5b6da9bd
https://github.com/wordpress-mobile/WordPress-Android/commit/9c9691a#diff-ec439e6e6d7cb33ad174cd3e5b6da9bd
https://github.com/CyanogenMod/android_packages_apps_Browser/commit/0622f96#diff-5feae667a2375978cec3bc0cfc9efd3b
https://github.com/CyanogenMod/android_packages_apps_Browser/commit/0622f96#diff-5feae667a2375978cec3bc0cfc9efd3b
https://github.com/aragaer/jtt_android/commit/4a7e298#diff-6193986e47a81e5e53e7f13906c54095
https://github.com/aragaer/jtt_android/commit/4a7e298#diff-6193986e47a81e5e53e7f13906c54095
https://github.com/google/iosched/commit/26f90d3#diff-a860a9085797f69ceab90031a94ff63f
https://github.com/google/iosched/commit/26f90d3#diff-a860a9085797f69ceab90031a94ff63f
https://github.com/k3b/APhotoManager/commit/6bcaf34#diff-21b786b93511440d8bfc28d560b58b88
https://github.com/k3b/APhotoManager/commit/6bcaf34#diff-21b786b93511440d8bfc28d560b58b88
https://github.com/wikimedia/apps-android-wikipedia/commit/7895e4b#diff-fc2ee68efe30e2b8ae06036781654774
https://github.com/wikimedia/apps-android-wikipedia/commit/7895e4b#diff-fc2ee68efe30e2b8ae06036781654774
https://github.com/andstatus/andstatus/commit/da49061#diff-d7a31ea4c55bae472368bccf882e4e0a
https://github.com/andstatus/andstatus/commit/da49061#diff-d7a31ea4c55bae472368bccf882e4e0a
https://doi.org/10.1109/MobileSoft.2015.38
https://doi.org/10.1109/ASE.2015.50
https://doi.org/10.1109/ICSME.2017.12
https://doi.org/10.1109/MOBILESoft.2019.00030
https://doi.org/10.1145/3242163.3242169
https://doi.org/10.1109/SCAM.2019.00017

	Abstract
	1 Introduction
	1.1 Goal and Research Questions
	1.2 Study Contributions
	1.3 Paper Structure

	2 Related Work
	3 Methodology
	4 Experimental Results
	4.1 RQ1: What types of refactoring operations are applied to unit test files compared to non-test files?
	4.2 RQ2: What types of refactoring operations are frequently applied to smelly test files?
	4.3 RQ3: What kinds of refactorings are typically used to remove test smells?

	5 Discussion & Future Direction
	6 Threats to Validity
	7 Conclusion & Future Work
	References

