
DeepIaC: Deep Learning-based Linguistic
Anti-Pattern Detection for Infrastructure-as-Code
Nemania Borovits

1
, Indika Kumara

1
, Parvathy Krishnan

1
, Stefano Dalla Palma

2
, Dario Di Nucci

2
,

Fabio Palomba
3
, Damian Tamburri

1
, Willem-Jan van den Heuvel

2

1
Jheronimus Academy of Data Science, Eindhoven University of Technology, The Netherlands

2
Jheronimus Academy of Data Science, Tilburg University, The Netherlands

3
University of Salerno, Italy

Abstract
Linguistic anti-patterns are recurring poor practices concern-

ing inconsistencies among the naming, documentation, and

implementation of an entity. They impede readability, under-

standability, and maintainability of source code. In this paper,

we attempt to detect linguistic anti-patterns in infrastructure

as code (IaC) scripts used to provision and manage comput-

ing environments. In particular, we consider inconsistencies

between the logic/body of IaC code units and their names.

To this end, we propose a novel automated approach that

employs word embeddings and deep learning techniques.

We build and use the abstract syntax tree of IaC code units

to create their code embedments. Our experiments with a

dataset systematically extracted from open source reposi-

tories show that our approach yields an accuracy between

0.785 and 0.915 in detecting inconsistencies.

CCS Concepts: • Software and its engineering→Main-
taining software; • Computer systems organization→
Cloud computing; • Computing methodologies → Su-
pervised learning by classification.

Keywords: Infrastructure Code, IaC, Linguistic Anti-patterns,
Deep Learning, Word2Vec, Code Embedding, Defects

ACM Reference Format:
Nemania Borovits

1
, Indika Kumara

1
, Parvathy Krishnan

1
, Stefano

Dalla Palma
2
, Dario Di Nucci

2
, Fabio Palomba

3
, Damian Tamburri

1
,

Willem-Jan van den Heuvel
2
. 2020. DeepIaC: Deep Learning-based

Linguistic Anti-Pattern Detection for Infrastructure-as-Code. In

2020 IEEE Workshop on Machine Learning Techniques for Software
Quality Evaluation (MaLTeSQuE), November 13, 2020, California,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

MaLTeSQuE 2020, November 13, 2020, California, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
With growing importance for the “need for speed” in the

current IT market, the software development cycle is becom-

ing shorter everyday. Development and IT operation teams

are increasingly cooperating as DevOps teams, relying mas-

sively on automation at both development and operations

levels. The software code driving such automation is collec-

tively known as Infrastructure-as-Code (IaC), a model for

provisioning and managing a computing environment using

the explicit definition of the desired state of the environment

in source code and applying software engineering principles,

methodologies, and tools [14].

Although IaC is a relatively new research area, it attracted

an ever-increasing number of scientific works in recent

years [16]. Nevertheless, most research has been done on

IaC frameworks, while only a few studies explored the no-

tion of infrastructure code quality. Among others, the first

steps in this direction focused on applying the well-known

concept of Software Defect Prediction [7] to infrastructure

code defining defect prediction models to identify pieces

of infrastructure that may be defect-prone and need more

inspection. In this perspective, previous works mainly fo-

cused on the identification of structural code properties that

correlate with defective infrastructure code scripts.

However, this is only one of the possible proxies to identify

defective code. Indeed, many problems can be rose by ana-

lyzing the plain text of software code. In particular, linguistic

anti-patterns, that is, recurring poor practices concerning

inconsistencies among the naming, documentation, and im-

plementation of an entity, have shown to be a good proxy

for defect prediction [3, 10, 15]. Therefore, while the exist-

ing literature mainly focuses on structural characteristics

of defective IaC scripts, at the best of our knowledge, none

exists that analyze linguistic issues. This motivation led to

the research goal of this work:

How accurately can we detect linguistic anti-patterns in
infrastructure as code (IaC) using a Deep-Learning approach?

Boosted by the emerging trend of deep learning and word

embeddings for software code analysis and defect prediction,

we propose DeepIaC, a novel approach to detect linguistic

anti-patterns in IaC, focusing on name-body inconsistencies

in IaC code units. Our experiments on a dataset composed of

open source repositories show DeepIaC yields an accuracy

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MaLTeSQuE 2020, November 13, 2020, California, USA Borovits, N., et al.

between 0.785 and 0.915 in detecting inconsistencies with

AUC (Area Under the ROC Curve) metric between 0.779 and

0.914, and MCC (Matthews correlation coefficient) metric be-

tween 0.570 to 0.830. We deem our approach can contribute

to step the current research up by tackling the problem of IaC

Defect Prediction by a different perspective and provide a

solid baseline for future studies focusing on linguistic issues.

The remainder of this paper is organized as follows. Sec-

tion 2 describes IaC, Ansible, and the related works. Section 3

details the approach to identify linguistic anti-patterns with

a focus on tasks name-body inconsistencies. Section 4 elabo-

rates on the empirical evaluation of the proposed approach,

its results, and limitations. Finally, Section 5 concludes the

paper and outlines future works.

2 Background and Related Work
This section introduces Infrastructure-as-Code and the Ansi-

ble configurationmanagement technology, and describes pre-

vious studies aimed at identifying defects and anti-patterns

in infrastructure code.

name: Create Datadog agent configuration directory

file:

dest: /etc/datadog-agent

state: directory

name: Create main Datadog agent configuration file

template:

src: datadog.yaml.j2

dest: /etc/datadog-agent/datadog.yaml

owner: datadog_user

group: datadog_user

notify: restart datadog-agent

Figure 1. A snippet of an Ansible role, showing two tasks

2.1 Infrastructure as Code and Ansible
Infrastructure-as-Code (IaC) is a model for provisioning and

managing a computing environment using the explicit defi-

nition of the desired state of the environment in source code

and applying software engineering principles, methodolo-

gies, and tools via a Domain Specific Language (DSL). IaC

DSLs enables defining the environment state as a software

program, and IaC tools enable managing the environment

based on such programs. In this study, we consider the Ansi-

ble IaC language, one of the most popular languages amongst

practitioners, according to our previous survey [6].

In Ansible, a playbook defines an IT infrastructure au-

tomation workflow as a set of ordered tasks over one or

more inventories consisting of managed infrastructure nodes.

A module represents a unit of code that a task invokes and

serves a specific purpose, such as setting up a Datadog agent,

creating a MySQL database, or installing an Apache web-

server. A role can be used to group a cohesive set of tasks

and resources that together accomplish a specific goal, such

as installing and configuring MySQL. When the tasks are ex-

ecuted, the states of the resources in the target nodes change.

To react to such changes, handlers can be configured per task

using notify parameter.

Figure 1 shows an Ansible snippet for configuring a Data-

dog agent. The two tasks use the Ansible modules file and
template to create a directory to keep the configuration file

of Datadog and generate a configuration file from a template.

Once the configuration file is created (i.e., a state change),

the handler is triggered to ensure that the Datadog agent is

restarted to make the new configuration effective.

2.2 Related Work
Most of the previous works describe infrastructure code qual-

ity in terms of smelliness [5] and defects-proneness of Chef

and Puppet infrastructure components. From a smelliness

perspective, Schwarz et al. [20], Spinellis et al. [21], and Rah-

man et al. [17] applied the well-know concept to IaC, and

identified code smells that can be grouped into four groups:

(i) Implementation Configuration such as complex expres-

sions and deprecated statements; (ii) Design Configuration
such as broken hierarchies and duplicate blocks; (iii) Secu-
rity Smells such as admin by default and hard-coded secrets;

(iv) General Smells such as long resources and too many at-

tributes. From a defect prediction perspective, Rahman et

al. [19] identified ten source code measures that significantly

correlate with defective infrastructure as code scripts such

as properties to execute bash and/or batch commands, to

manage file permissions, and more.

In this work, we step this line of research up by proposing

a novel automated approach that employs code embeddings

(vector representation of IaC code) and deep learning tech-

niques to detect linguistic anti-patterns, focusing on name-

body inconsistencies in IaC code units. We focus on Ansible,

rather than Puppet and Chef, because Ansible is the most

used IaC in industry [6].

3 DeepIaC: Deep-Learning-based
Linguistic Anti-Pattern Detection for
Infrastructure-as-Code

This section presents DeepIaC, our approach to identify-

ing inconsistencies between names and logic/bodies in IaC

code units and, in particular, in Ansible. Figure 2 illustrates

the workflow of DeepIaC as a set of steps, which can be

categorized into the following phases:

• Corpus Tokenization. Given a corpus of Ansible tasks, this

phase generates token streams for both task names and

bodies. To tokenize a body of a task while considering its

semantic properties, we build and use its abstract syntax

tree (AST).

• Data Sets Generation. Since it is challenging to find a suffi-

cient number of real buggy task examples that suffer from

inconsistencies, we apply simple code transformations to

generate buggy examples from likely correct examples.

We perform such transformations on the tokenized data

DeepIaC: Deep Learning-based Linguistic Anti-Pattern Detection for IaC MaLTeSQuE 2020, November 13, 2020, California, USA

Build ASTs for

Task Bodies

Ansible

Task

Corpus

Task Name Tokenization

Task Body

Tokenization

Split Task

Bodies and

Names

Split Datasets

into Train/Test/

Validation Sets

Merge Task Names

and Bodies in one

Token Sequence

Filter

Datasets by

the Module

Create Vector

Representations

(Word2Vec)

Embed Vector

Representations

to CNN

Train

CNN

Model
Create Vector

Representations

Select Model and

Make Predictions

Query

Model

[For the data set of each unique module]

Model

Repository

Tokenization

and

Preprocessing

Filter

Datasets by

the Module

Save

Model

[For the data set of each unique module]

Likely Inconsistencies

between Task Names

and Task Bodies

Add Name-Body

Inconsistencies

via Mutation

Positive Set

Negative (Buggy) Set

Previously Unseen

Ansible Task Corpus

Figure 2. Overview of the DeepIaC approach

set and assume that most tasks in the corpus do not have

inconsistencies. Indeed, several previous studies [9, 15]

in software defect prediction have successfully applied

similar techniques to generate training and test data.

• From Datasets to Vectors. We employ Word2Vec [12] to

convert the token sequences into distributed vector rep-

resentations (code embeddings). We train a deep learning

model for each Ansible module type as our experiments

showed a single model does not perform well, potentially

due to low token granularity. Thus, the tokenized data set

is divided into subsets per module, and the code embed-

dings for each subset are separately generated.

• Model Training. This phase feeds the code embeddings to

a Convolutional Neural Network (CNN) model [11] and

train the model to distinguish between the tasks having

name-body inconsistencies from correct tasks. The trained

model is stored in the model repository.

• Inconsistency Identification. The trained models (classi-

fiers) from the model repository are employed to predict

whether the name and body of a previously unseen An-

sible task are consistent or not. Each task is transformed

into its corresponding vector representations, which can

be consumed by a classifier.

3.1 Tokenization of Names and Bodies
This step converts the Ansible task descriptions (raw data

units) to a stream of tokens, which can be consumed by our

deep learning algorithms. The names of the tasks are gen-

erally short texts in natural language, and thus we tokenize

them by splitting them into words. However, the body of

a task has a structured representation. Hence, we use the

abstract syntax tree (AST) of the task body to generate the

token sequences while preserving the code’s semantic infor-

mation. In the research literature, ASTs are commonly used

for representing code snippets as distributed vectors [2, 10].

A task body defines the configuration/instance of an Ansi-

ble module as a set of parameters (name-value pairs). It can

also specify a conditional (when, loop, and notify action to

inform other tasks and handlers about the changes to the

AnsibleTaskBody

Module

Name

template

Notify

restart datadog-agentParameter

src datadog.yaml.j2

Parameter

group datadog_group

Figure 3. AST model for a task using template module

state of a resource managed by a module). We create an AST

model that can capture these key information of a task body.

To generate the token sequence from the AST, we use the

pre-order depth-first traversal algorithm.

Figure 3 shows a snippet of the generate AST model for

the task example in fig. 1. AST node types capture the se-

mantic information such as modules and their parameters

and notify action, and the raw code tokens capture the raw

text values. The token stream generated from the AST will

be [AnsibleTaskBody, Module, Name, template, Parameter, src,
datadog.yaml.j2,, Notify, restart datadog-agent]

3.2 Generating Training, Test, and Validation Data
Our linguistic anti-pattern detection is a binary classification

task and employs supervised learning. Thus, we need a data

set that includes correct (name-body consistent) and buggy

(name-body inconsistent) task examples. As the Ansible is

a domain-specific language and is relatively new, it is non-

trivial to collect a sufficient number of buggy examples from

real-world corpus. By inspired by the training data genera-

tion in the defect prediction literature [9, 15], we generate

the buggy task examples from a given corpus of likely correct

task examples by applying simple code transformations.

Before applying code transformations, we divide the tok-

enized data set into training, test, and validation sets to avoid

potential data leakage between three sets during transforma-

tions. Within each data set, we swap the body of a given task

with the body of another randomly selected task to create

inconsistencies. We consider two cases: (i) the tasks using

the same module (e.g., two tasks with the template module)

MaLTeSQuE 2020, November 13, 2020, California, USA Borovits, N., et al.

Figure 4. Architecture of CNN model used

and (ii) the tasks using different modules (e.g., one task with

the template module and another with the file module).

3.3 Creating Vector Representations
To feed the token sequences into a learning algorithm, we

need to transform them into vector representations. We use

theword embedding techniques for the vector representation

of the Ansible task names and the corresponding task bodies.

Word embedding techniques take a set of token sequences

as inputs and produce a map between string tokens and

numerical vectors [12]. They embed tokens into numerical

vectors and place semantically similar words in adjacent

locations in the vector space. As a result, the semantic infor-

mation from the input text is preserved in the correspond-

ing vector representation. We use Word2Vec to produce

word embeddings.Word2Vec is a two-layer neural network

that processes text by creating vector representations from

words [12]. The input for the Word2Vec is a sequence of

words (tokens), while its output is a set of feature vectors

that represent these words. Word2Vec is used by several

deep learning-based approaches to software defect predic-

tion [4, 9, 10, 15].

We used the Continuous Bag of Words (CBOW) model of

Word2Vec that can predict target words from the surround-

ing context words. The rationale is that IaC scripts (i.e., task

names and bodies) are sequences of tokens. Let us assume to

have a sequence of tokens 𝑡1,... 𝑡𝑖 ..., 𝑡 𝑗) where 𝑡𝑖 is a token of

an task, DeepIaC considers a window of𝑤 tokens around 𝑡𝑖 .

For predicting the context of the token 𝑡𝑖 , the two methods

consider
𝑤
2
tokens before 𝑡𝑖 and

𝑤
2
tokens after 𝑡𝑖 .

3.4 Training Predication Models
We use Convolutional Neural Network (CNN) to build our

binary classifier that can categorize the tasks into name-body

consistent or not. CNNs are biologically-inspired variants of

multi-layer artificial neural networks [11]. Although they are

widely used in image classification tasks, numerous studies

report their success in the domain of NLP [8, 23], and defect

prediction of textual source code [1, 4, 10, 15].

Figure 4 shows the architecture of CNNs that our approach

uses. The embedded token vectors of Ansible tasks generated

by the trained CBOW (Word2Vec) model are used as an

input to a CNN. The input for the CNN is a two-dimensional

vector which dimension varies since each Ansible module

has a different vocabulary. However, each vector representa-

tion is long 100 words since we use the same setup for train-

ing Word2Vec. We use two convolutional pooling layers

to reduce data dimensionality and capture the tasks’ local

features, similarly to the previous work [10]. L2 regular-

ization is used in each convolutional layer. Furthermore, a

dropout layer avoids overfitting, and a dense layer combines

the previously captured local features by the convolutional

and subsampling layers. The dense layer’s output vector pre-

dicts and detects inconsistent module use within a task. The

output layer consists of neurons per one task of each module.

The output neurons are 0 (inconsistent) or 1 (consistent). The

measure for the loss function is the Mean Absolute Error

(MAE), and the corresponding optimizer is the Stochastic

Gradient Descent (SGD).

For the CNN training, we padded the input token se-

quences to comply with the fixed-width input layer on CNN.

Motivated by Wang et al. [24], we appended zero vectors

at the end of the token sequences to reach the size of the

longest token sequence of the input tasks. To compute the

maximum length of the input sequences 𝑠 we used the equa-

tion:𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ𝑠 =𝑚𝑒𝑎𝑛𝑠 +𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 . To avoid
having long sequences with many padded zeros, we decided

the max length of the input sequences should be within two

standard deviations of the mean [13]. This way, we filtered

outliers by reducing noise from the padded zeros, and only

the 3% of the input token sequences were affected by this

operation.

3.5 Inconsistency Identification
Inconsistency identification is a binary classification task

since the test data are labeled in two classes: consistent (the
negative class in this work) and inconsistent (the positive

class in this work). Once the binary classifier is trained with

a sufficiently large amount of training data, we can query

it to predict whether unseen Ansible tasks (e.g., unseen test

data sets) have name-body inconsistencies. To evaluate the

performance of the trained models, we used the common

metrics used in binary classification problems, namely accu-
racy, precision, recall, F1 score, MCC (Matthews correlation

coefficient), and AUC (Area Under the ROC (receiver operat-

ing characteristic curve) Curve).

3.6 Implementation
To parse Ansible tasks and build ASTs for them,we developed

a custom python tool. We tokenized the task names using

the NLTK library
1
. We used the Word2vec implementation

of the gensim library to generate vectors from tokens. We im-

plemented CNN/deep learning models using TensorFlow and

1http://www.nltk.org/

http://www.nltk.org/

DeepIaC: Deep Learning-based Linguistic Anti-Pattern Detection for IaC MaLTeSQuE 2020, November 13, 2020, California, USA

Keras frameworks. We used PyGithub
2
and PyDriller [22]

to locate repositories that contain Ansible IaC scripts. The

complete prototype implementation of DeepIaC, including

data set is available on GitHub
3
.

4 Empirical Evaluation
We evaluate DeepLaC by applying it to a real-word corpus

of Ansible tasks. We aim to answer the research question:

How effectively does DeepIaC identify inconsistent tasks?

4.1 Data Collection
We collected the data set from GitHub. To ensure the quality

of the data collected, we used the following criteria (adopted

from Rahman et al. [18]) when searching for repositories

that include Ansible scripts.

• Criteria-1. At least 11% of the files belonging to the repos-

itory must be IaC scripts.

• Criteria-2. The repository has at least 10 contributors.

• Criteria-3. The repositorymust have at least two commits

per month.

• Criteria-4. The repository is not a clone.

We found 38 GitHub repositories that meet the above

criteria. We extracted 18, 286 Ansible tasks from them. As

we trained a CNN model per a unique Ansible module, our

experiments only considered 10 most used modules, which

account for 10, 396 tasks in the collected data set (57% of the

data set). As discussed in Section 3, we split each task into

its name and body and tokenized both.

4.2 Data Preparation and Model Tuning
We split the tokenized dataset as follows: 60% of the data

was used for training, 20% was the test set during the train-

ing, and 20% was used for the evaluation of our model. For

each data set, we applied the transformations described in

Section 3.3 to create the corresponding buggy data set. The

filtered token sequences were the input to the Word2vec.

We tuned the Word2Vec parameters as: model(CBOW), vec-

tor size(100), Learning rate (0.025), Min word frequency(1),

window size(6), and epochs(1000). Next, we embedded the

vector representations to the CNN classifier. We tuned the

parameters of the CNN as: convolution dimension (10), ac-

tivation layer (ReLu), output layer (softmax), optimization

algorithm (sgd), token sequence range (84-99), learning rate

(1e-02), pooling type (max pool), and loss function (MAE).

4.3 Effectiveness in Identifying Inconsistencies
Table 1 presents the inconsistency detection results for the

top 10 Ansible modules in our data set. Overall, our approach

yielded an accuracy ranging from 0.785 to 0.915, AUC metric

from 0.779 to 0.914, and MCCmetric from 0.570 to 0.830. Our

2https://github.com/PyGithub/PyGithub
3https://github.com/SODALITE-EU/defect-prediction/tree/master/
linguistic-ap

approach achieved the highest performance for detecting

inconsistency for the file module, where the accuracy was

0.915, the F1 score for the inconsistent class was 0.92, and the

F1 score for the consistent class was 0.91. We also observed

that the ROC curve, the model loss, and the accuracy plots

confirm the model’s good performance. Due to the limited

space, we do not present the corresponding visualizations,

which are in the GitHub repository of this study.

4.4 Threats to Validity
Threats to construct validity. The collected reposito-

ries may not be relevant for the problem at hand. We miti-

gated this threat by applying the criteria used in previous

works on IaC to ensure the quality of the collected data. Al-

though the number of repositories may seem low, a small

but relevant and representative dataset of active repositories

is preferable. Another threat to construct validity concerns

the mutation of scripts employed to generate inconsistent

cases, which may not represent real-world bugs. Neverthe-

less, we tried to mitigate this threat by applying the existing

approaches that have successfully used mutation for generat-

ing the training data [9, 15]. We plan to further mitigate this

threat by gathering more real-cases of inconsistent tasks.

Threats to internal validity. The choice of the features
used to train the CNN model could influence linguistic anti-

patterns detection. We mitigated this threat by training the

model using a high number of features (obtained by trans-

forming each task to a vector space of words) extracted from

more than ten thousand Ansible tasks. The feature engi-

neering for the classification task depends on the quality of

the code base, including naming conventions, use of typos,

and abbreviations. This aspect poses a threat to validity, and

advanced NLP techniques can be employed to overcome this.

Threats to external validity. The conclusions are de-

rived only from a subset of modules in Ansible (i.e., the ten

most used), which might not be reproducible for other mod-

ules and languages. However, we used both generic modules

(such as command modules) as well as more specific mod-

ules. Specific modules (e.g., the copy module) do focus works,

but general modules can execute ad-hoc OS commands. We

believe that using a mix of generic and specific modules may

mitigate, at least partially, this threat. Finally, we analyzed

only Ansible projects, and the results could not generalize to

other IaC languages (e.g., Chef, Puppet). Extend our approach

to such languages is part of our agenda.

5 Conclusion and Future Work
DeepIaC is an approach to detecting linguistic anti-patterns

in IaC scripts by leveraging word embedding and deep learn-

ing. In particular, DeepIaC provides automated support to

the users to debug inconsistencies in the names and bodies

of IaC code units. Our experimental results show that our

https://github.com/PyGithub/PyGithub
https://github.com/SODALITE-EU/defect-prediction/tree/master/linguistic-ap
https://github.com/SODALITE-EU/defect-prediction/tree/master/linguistic-ap

MaLTeSQuE 2020, November 13, 2020, California, USA Borovits, N., et al.

Table 1. Classification results for the top 10 used Ansible modules

Evaluation Metric/Module shell command set_fact template file gather_facts copy service debug fail

Inconsistent
Precision 0.880 0.790 0.770 0.820 0.900 0.900 0.860 0.870 0.870 0.820

Recall 0.810 0.840 0.900 0.940 0.940 0.830 0.810 0.760 0.770 0.690

F1 score 0.843 0.814 0.830 0.876 0.920 0.864 0.834 0.811 0.817 0.749

Consistent
Precision 0.810 0.820 0.890 0.930 0.930 0.905 0.82 0.800 0.750 0.760

Recall 0.890 0.770 0.750 0.800 0.890 0.770 0.870 0.900 0.860 0.870

F1 score 0.848 0.794 0.814 0.860 0.910 0.870 0.844 0.847 0.801 0.811

Accuracy 0.847 0.805 0.819 0.868 0.915 0.817 0.838 0.833 0.809 0.785

MCC 0.697 0.610 0.649 0.744 0.830 0.685 0.678 0.669 0.625 0.570

AUC 0.848 0.804 0.822 0.868 0.914 0.848 0.838 0.830 0.814 0.779

approach’s performance achieves an accuracy between 0.785

and 0.915 in detecting inconsistencies. We plan to extend

the DeepIaC approach to detect name-based bugs [15] and

misconfigurations in IaC code scripts. We also aim to apply

the DeepIaC to multiple widely used IaC languages.

Acknowledgments
This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under

grant agreement No 825480 (SODALITE project).

References
[1] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolu-

tional attention network for extreme summarization of source code.

In International conference on machine learning. 2091–2100.
[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019.

Code2vec: Learning Distributed Representations of Code. Proc. ACM
Program. Lang. 3, Article 40 (Jan. 2019), 29 pages.

[3] V. Arnaoudova, M. Di Penta, G. Antoniol, and Y. Guéhéneuc. 2013. A

New Family of Software Anti-patterns: Linguistic Anti-patterns. In

2013 17th European Conference on Software Maintenance and Reengi-
neering. 187–196.

[4] S. Fakhoury, V. Arnaoudova, C. Noiseux, F. Khomh, and G. Antoniol.

2018. Keep it simple: Is deep learning good for linguistic smell detec-

tion?. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). 602–611.

[5] Martin Folwer. 1999. Refactoring: Improving the Design of Existing

Programs.

[6] Michele Guerriero, Martin Garriga, Damian A Tamburri, and Fabio

Palomba. 2019. Adoption, Support, and Challenges of Infrastructure-

as-Code: Insights from Industry. In 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 580–589.

[7] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve

Counsell. 2011. A systematic literature review on fault prediction

performance in software engineering. IEEE Transactions on Software
Engineering 38, 6 (2011), 1276–1304.

[8] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classi-

fication. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Association for Computational

Linguistics, Doha, Qatar, 1746–1751.

[9] G. Li, H. Liu, J. Jin, and Q. Umer. 2020. Deep Learning Based Identifica-

tion of Suspicious Return Statements. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering. 480–491.

[10] K. Liu et al. 2019. Learning to Spot and Refactor Inconsistent Method

Names. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). 1–12.

[11] Masakazu Matsugu, Katsuhiko Mori, Yusuke Mitari, and Yuji Kaneda.

2003. Subject independent facial expression recognition with robust

face detection using a convolutional neural network. Neural Networks
16, 5-6 (2003), 555–559.

[12] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff

Dean. 2013. Distributed representations of words and phrases and

their compositionality. In Advances in neural information processing
systems. 3111–3119.

[13] David S Moore, William I Notz, and Michael A Fligner. 2015. The basic
practice of statistics. Macmillan Higher Education.

[14] Kief Morris. 2016. Infrastructure as code: managing servers in the cloud.
" O’Reilly Media, Inc.".

[15] Michael Pradel and Koushik Sen. 2018. DeepBugs: A Learning Ap-

proach to Name-Based Bug Detection. Proc. ACM Program. Lang. 2,
Article 147 (Oct. 2018), 25 pages. https://doi.org/10.1145/3276517

[16] Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. 2018.

Where Are The Gaps? A Systematic Mapping Study of Infrastructure

as Code Research. arXiv preprint arXiv:1807.04872 (2018).
[17] Akond Rahman, Chris Parnin, and Laurie Williams. 2019. The Seven

Sins: Security Smells in Infrastructure as Code Scripts. In Proceedings
of the 41st International Conference on Software Engineering. 164–175.

[18] Akond Rahman and Laurie Williams. 2018. Characterizing defective

configuration scripts used for continuous deployment. In 2018 IEEE
11th International Conference on Software Testing, Verification and Vali-
dation (ICST). IEEE, 34–45.

[19] Akond Rahman and Laurie Williams. 2019. Source code properties

of defective infrastructure as code scripts. Information and Software
Technology 112 (2019), 148–163.

[20] Julian Schwarz, Andreas Steffens, and Horst Lichter. 2018. Code Smells

in Infrastructure as Code. In 2018 11th International Conference on
the Quality of Information and Communications Technology (QUATIC).
IEEE, 220–228.

[21] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does

your configuration code smell?. In 2016 IEEE/ACM 13th Working Con-
ference on Mining Software Repositories (MSR). IEEE, 189–200.

[22] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. Py-

driller: Python framework for mining software repositories. In Pro-
ceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. 908–911.

[23] Peng Wang et al. 2015. Semantic clustering and convolutional neural

network for short text categorization. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume
2: Short Papers). 352–357.

[24] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically Learning

Semantic Features for Defect Prediction. In Proceedings of the 38th Inter-
national Conference on Software Engineering (Austin, Texas) (ICSE ’16).
Association for Computing Machinery, New York, NY, USA, 297–308.

https://doi.org/10.1145/3276517

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Infrastructure as Code and Ansible
	2.2 Related Work

	3 DeepIaC: Deep-Learning-based Linguistic Anti-Pattern Detection for Infrastructure-as-Code
	3.1 Tokenization of Names and Bodies
	3.2 Generating Training, Test, and Validation Data
	3.3 Creating Vector Representations
	3.4 Training Predication Models
	3.5 Inconsistency Identification
	3.6 Implementation

	4 Empirical Evaluation
	4.1 Data Collection
	4.2 Data Preparation and Model Tuning
	4.3 Effectiveness in Identifying Inconsistencies
	4.4 Threats to Validity

	5 Conclusion and Future Work
	Acknowledgments
	References

