
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Speeding Up the Data Extraction of Machine Learning
Approaches: A Distributed Framework

Martin Steinhauer
SeSa Lab - University of Salerno

Fisciano (Salerno), Italy
m.steinhauer@studenti.unisa.it

Fabio Palomba
SeSa Lab - University of Salerno

Fisciano (Salerno), Italy
fpalomba@unisa.it

ABSTRACT

In the last decade, mining software repositories (MSR) has become
one of the most important sources to feed machine learning mod-
els. Especially open-source projects on platforms like GitHub are
providing a tremendous amount of data andmake them easily acces-
sible. Nevertheless, there is still is a lack of standardized pipelines
to extract data in an automated and fast way. Even though several
frameworks and tools exist which can fulfill specific tasks or parts
of the data extraction process, none of them allow neither building
an automated mining pipeline nor the possibility for full paral-
lelization. As a consequence, researchers interested in using mining
software repositories to feed machine learning models are often
forced to re-implement commonly used tasks leading to additional
development time and libraries may not be integrated optimally.

This preliminary study aims to demonstrate current limitations
of existing tools and Git itself which are threatening the prospects
of standardization and parallelization. We also introduce the multi-
dimensionality aspects of a Git repository and how they affect
the computation time. Finally, as a proof of concept, we define an
exemplary pipeline for predicting refactoring operations, assessing
its performance. Finally, we discuss the limitations of the pipeline
and further optimizations to be done.

KEYWORDS

Machine Learning Pipelines; Distributed Mining; Mining Software
Repositories.
ACM Reference Format:

Martin Steinhauer and Fabio Palomba. 2020. Speeding Up the Data Ex-
traction of Machine Learning Approaches: A Distributed Framework. In
MaLTeSQuE 2020: International Workshop on Machine Learning Techniques

for Software Quality Evaluation, November 13, 2020 - Sacramento, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The success of machine learning heavily relies on the amount and
quality of data the algorithm is trained on. This is true not only
for analyzing source code repositories but all learning strategies
in general. At the the same time, the generation and extraction of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MaLTeSQuE 2020, November 13, 2020, Sacramento, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

suitable data is often based on a manual process which is costly and
time-consuming. While getting the data for other machine learning
settings is often difficult, the process of mining software repositories
benefits from GitHub as one of the most important data sources
and therefore has a high ability to be automated. The availability of
GitHub data through big and public available open-source projects
is one of the key aspects in MSR. Automation not only decreases the
time spent on building datasets, it also improves the reproducibility
of research projects and reusability of mining fragments throughout
different projects when designed with generalization in mind.

However, in this preliminary work we show that the level of
automation can be extended and improved by building a pipeline
for automated repository mining and also improve the computation
performance by applying a distributed parallelization approach
already renowned in the area of big data processing. An exemplary
pipeline is built that is able to detect and extract refactoring oper-
ations directly from GitHub repositories and calculates software
quality metrics before and after the refactoring operation has been
conducted. Eventually, granular performance data is collected and
evaluated to affirm the potential of further improvement and work.

2 BACKGROUND AND LIMITATIONS OF THE

STATE OF THE ART

In this section, we provide background information on the frame-
works available that ease the data extraction process of machine
learning processes as well as their limitations.

2.1 Related Work

Previous research shows that there is a lack of reproducibility in
most git-based research projects [17]. Since then, some new frame-
works and libraries evolved targeting the traversal of Git projects.

Common used frameworks to analyze the commit history of soft-
ware repositories are RepoDriller [6] and PyDriller [4, 19]. Whereas
both tools simplify the traversing of Git commits, PyDriller is able
to calculate some basic metrics like complexity and method count.
The metric calculation is done within the library and could not
easily be replaced with custom metric logic. Additionally, PyDriller
states to be multithreaded and therefore improve the performance
and lower the calculation time. A closer look into the library shows
that this statement is only partially true: PyDriller is based on the
library GitPython which is restricted by visiting only one commit
at a time. This is caused by the underlying file-based Git archive
that enables thread-safety by locking the files during e.g. check out
operations. Hence it is only possible to parallelize the processing
in the file dimension but not in the time dimension (the commit
history). In other words, only the iteration over files within one

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MaLTeSQuE 2020, November 13, 2020, Sacramento, USA Martin Steinhauer and Fabio Palomba

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

commit and then checkout the next commit which can be paral-
lelized. The same theory applied to RepoDriller which relies on the
Java-based alternative JGit [5]. And besides, both tools allow no
multi-repository mining and require additional orchestration and
process management.

Other projects try to avoid direct file system access and transfer-
ring repositories in an additional database before the first analysis.
One well-known project is GHTorrent [12, 13] which allows vari-
ous file-independent queries after importing the repository into a
MySQL or MongoDB database. Unfortunately, the file content is not
considered within this approach and only tooling for generating
and importing is covered by them.

The project ‘Public git archive’ was introduced by researchers
at sourced and enables the analysis of repositories from GitHub
at a very large scale. They provide a lot of tools written in Go to
query and also introduce a new storage format called Siva to reduce
the stored size of forked repositories. Through a publicly available
index file no additional processing is needed for developers. After
the company was sold, the public available index file was taken
down due to high costs and apparently was lost completely [2].

2.2 Limitations of the state of the art

Despite the notable effort spent so far, in our investigation into the
matter we noticed a number of limitations of the existing frame-
works that can represent challenges to be addressed.

2.2.1 Reproducibility challenge. Related work shows that repro-
ducibility of the mining pipeline is a key feature to enable other re-
searchers an easy reproduction and verification of the used dataset.
Therefore, hosted datasets can become a nightmare since they re-
quire additional (financial) resources of the project holder and also
are dependent on the life cycle of the initial project. If the project
gets deprecated, all data could be gone like in the case of sourced.
Mining data directly from GitHub may not resolve the problem
of deleted or switched to private repositories and also introduce
some overhead in terms of cloning and preprocessing but decreases
the dependence to a hosting company or the creator of the project.
Consequently, we will focus on the raw Git archive as a source of
data.

2.2.2 Multi-dimensionality of Git data. At first glance, a GitHub
repository looks like a tree-like timeline which contains different
revisions and file versions along that axes. But from an algorithmic
perspective, that can rapidly become an issue in terms of perfor-
mance as every axis results in an iteration loop to reach at least
each file once. This could also be described as multi-dimensionality
of the Git data, as each additional dimension added to the mining
process, will result more computation time and without considering
the actual computation cost for detecting refactorings or calculating
software quality metrics. Depending on the mining problem, we
identified the following dimensions:

• Time dimension: Time dimension describes the total size
of the analyzed commits. Git normally consists of one or
more branches containing one main branch, denoted asmas-

ter. When traversing over the master branch, one will get
all branches that have been merged into the master. In our
case, we assume that for refactoring detection it would be

sufficient to detect all valuable refactorings that have been
considered as useful by merging them back into the master
branch. Therefore, the time dimension of the refactoring
detection could be seen as linear. When an analysis problem
requires visiting every commit in the repository, the time
dimension is considered as the total count of commits within
the whole repository.

• File dimension: Defined by the file count one commit has
in total. This amount of files can vary significantly and often
depend on the project size, age of the project or the used
programming language. Additionally, it is important to note
that the file dimension is different for each commit as a
file can be added or deleted within a commit. If the latest
commits has only a few files and all others have many, the
file dimension will affect the performance more as if the last
commit have many files and the others have only a few.

• Structural node dimension: Similar to the file dimension,
the total number of interesting nodes, for example, classes,
methods or code lines, are counted in the content of each
file. Considering object-oriented languages, a file normally
contains one class, but also could consist of more than one
class declaration. If the mining problem is dependent on
method or class member declarations, those would also be
considered as a number of interesting nodes per file.

• Metric dimension: The last dimension is very specific par-
ticularly regarding the mining problem. In our example, be
would like to extract refactoring operations and calculate
software quality metrics. Therefore, the metric dimension is
highly coupled with the structural node dimension and de-
fined by themethod themetric is collected. RefactoringMiner
[20] uses an abstract UML algorithm to detect refactorings,
while CK [8] is using an abstract syntax tree (AST). Those
algorithms also add on top of the file or structural dimension,
depending on how they are implemented and designed.

2.2.3 Parallelization challenge. One of the biggest challenges is
building a mining tool, that allows scaling of the mining process
along the presented dimensionality axes. Both presented tools, Py-
Driller and RepoDriller, do not or only partially support the paral-
lelization. While RepoDriller does not do any kind of parallelization,
PyDriller allows scaling along the file dimension axis. Files within
a single commit can be analyzed by multiple threads and increase
the performance and decrease the computation time as the use of
those libraries shows [11]. As the multi-dimensionality of GitHub
repositories outlines, we can not presume that repositories contain
many files. When a repository contains fewer files but has a large
revision history, the runtime of the mining process will get worse.

As already explained, the structural node dimension and the
metric dimension are highly dependent on the type of analysis that
should be executed. To make this approach generalizable, we focus
on parallelization along the time and file dimension axes. As seen in
PyDriller, the file dimension can easily be parallelized. In opposite,
the commit axis is rather difficult: Since Git writes lock files when
accessing the repository to avoid file inconsistencies by modifying
the repository, only one commit can be visited concurrently. This
limitation reflects in JGit and GitPython, which has all file-based

2

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Speeding Up the Data Extraction of Machine Learning Approaches MaLTeSQuE 2020, November 13, 2020, Sacramento, USA

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

actions marked as non-threadsafe. This limitation results in libraries
not implementing a time dimension parallelization approach.

2.2.4 Generalization challenge. Even though we are conducting
this distributed approach in the context of detecting refactoring
operations, it is designed to be generalizable and can be reused for
other types of mining problems. Since mining problems can vary
from detecting developer behavior [], social aspects [] up to high
technical questions like code evolution [] and smell detection[], it
is not easy to build a pipeline that matches all type of problems.
Therefore, this pipeline concentrates on technical, content-based
repository mining. Additionally, libraries are not standardized in
their input and output design. While RefactoringMiner takes the
repository and commits as an input, CK is designed not designed
Git-specific and takes just the source directory as an input. This
requires the pipeline to adopt the corresponding libraries in terms
of in- and outputs of each pipeline step and even more important
to keep track of the memory usage, since the libraries itself write
outputs to disk, while within a pipeline, results partially are stored
in memory. This necessitate careful pipeline design and memory
management to avoid out of memory exceptions.

3 DISDRILLERY: A DISTRIBUTED

FRAMEWORK TO SUPPORT MACHINE

LEARNING RESEARCH

This section presents a distributed approach to support the data
extraction process of machine learning approaches. For the sake of
understandability, in the remaining of the paper we use the example
of learning software metrics to predict the effect of refactoring op-
erations on code quality: specifically, the example problem consists
of computing software quality metrics before and after each refac-
toring applied on a certain system in order to assess the extent to
which the refactoring has impacted on the values of those metrics.
It is important to know, however, that the distributed approach
proposed in this paper is general in scope, meaning that it can be
exploited for any kind of data extraction activities related to the
mining of software repositories.

We are using a MapReduce-inspired pattern for data distribution
and Apache Spark for pipeline implementation. MapReduce was
originally invented by Google and targets big data analysis and
calculations by splitting the computation process into a map and a
reduce phase [10] on a cluster of computation nodes. Those con-
cepts are reimplemented and available as open source software in
Apache Hadoop [18]. Spark improves this pattern by introducing
resilient distributed datasets (RDDs) which kept mainly in memory,
which results in a faster processing speed than the traditional, hard-
drive storage based Hadoop system. Also, Spark allows a better fault
tolerance due to directed acyclic graphs (DAGs) for computation
tasks. In case one task in the graph fails, Spark can easily restart
that specific task without canceling the whole computation.

The pipeline is basically split into three major computation steps:
The first step extracts the refactoring operations from a list of given
repositories. Spark is cloning one repository instance and scans for
commits along the master branch. The list of interesting commits
is split into batches of a definable size of k-commit and sent by
shuffling to each of the other worker nodes.

Figure 1: Overview of the refactoring mining pipeline.

In the second step, each worker starts cloning an separate
instance of the repository if does not already exist and runs
an instance of RefactoringMiner on the partial list of commits
each worker has assigned. The previously described number of
k-commits depends on the size of memory each worker node has
available, as the results are kept in the heap until one batch hash
finished the computation. Therefore it is important to adjust k ac-
cordingly: Is k set to high, Spark will fail caused by out of memory
exception. Is k to small, the performance will decrease as instanti-
ating an instance of RefactoringMiner is an expensive operation.
This step outputs a list where each row consists of the repository
name, the commit id of the refactoring operation and the type of
the refactoring operation (e.g. move method, extract method...).
The intermediate results are written as structured data using the
Apache Parquet file format [1] to reduce storage size and improve
performance.

The third step takes the shuffled list of refactoring commits
identified in the second step and starts again with checking if the
repository exists. If not, it gets cloned to that worker node. Now
for every batch of refactoring commits an instance of CK is created
and the parent commit of the given commit is identified. After that,
both commits are checked out and CK calculates the metrics before
and after the commit. Additionally, to reduce the computation time
and avoid useless data processing, those files that are marked as
changed are identified by the Git diff command and the metric
calculation is only executed for that list of modified files. As a result,
another parquet file is generated containing information about
the repository, the involved commits, the refactoring operations
(flattened by comma separation), the side of the operation (left =
commit before refactoring, right = commit after refactoring), the
file name, and the metrics.

3.1 Implementation details

Both libraries have not been very suitable to fit into our defined in
and output format. Therefore they have been forked and slightly
modified. RefactoringMiner only provides a method to detect a
range of refactoring operations between two commit ids, though
it found under certain circumstances more commits than actually
existed in this range. Another method that identifies refactoring
operations only in one commit was also not suitable in terms of
performance and object instantiation. So we added a method that
could accept a list of commits without instantiating each time a
whole Git repository object.

3

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

MaLTeSQuE 2020, November 13, 2020, Sacramento, USA Martin Steinhauer and Fabio Palomba

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

As CK accepts only a source directory, we also forked and modi-
fied this library to take a list of interesting files within that directory.
That allows the calculation of changed files only within the reposi-
tory.

Besides, the calculation of metrics is designed as abstract met-
ric processors, which improves the simplicity and extensibility of
adding custom metric calculation libraries.

4 PRELIMINARY ASSESSMENT OF

DISDRILLERY

4.1 Experimental Settings

The goal of the study is to provide a preliminary assessment of
the performance of the proposed framework, with the purpose

of understanding its potential usefulness for the data extraction
stage of machine learning approaches. More specifically, we seek
to understand computational time, which heavily depends on the
structure and dimension of the analyzed repositories. Hence, we
pose the following research question:

RQ1. To what extent can DisDrillery improve the computational

time with respect to a single-threaded baseline?

Context selection. The context of the study is composed of
the version history of the systems reported in Table 1. The se-
lection process of those repositories is driven by their amount of
commits available on the master branch (or more specifically, the
branch which HEAD is pointing to). We assume that repositories
with the most commits also contain a lot of refactoring operations.
Additionally, projects are selected by their popularity and active
contribution of developers. 1 shows auxiliary metrics to get a better
understanding about the shape of the repository in terms of time
and file dimension. Since the history is changing, we extracted
information about the minimum and maximum amount of files as
well as the mean number of files and the deviation. Time dimension
is represented by the amount of commits available on the master
branch.

Table 1: Repository Dimensionality Metrics

Files
Repository Min Max Mean Commit

google/guava 4 1862 1589.4 5295
apache/mahout 5 1245 4145.1 4417
reactivex/rxjava 65 3173 4878.9 5755
apache/parquet-mr 2 802 2013.4 2188
apache/commons-io 21 317 2107.9 2384

Evaluation methodology. For the runtime evaluation, a Spark
cluster with a maximum amount of eight worker nodes is used.
To observe the impact of distribution, each project is run with a
different number of worker nodes w. Since no tool currently is
capable of running a whole pipeline, the setting with only one
worker node (w = 1) is used as an reference implementation for no
parallelization. Each worker only makes use of one core, therefore

the parallelization focuses on the distribution within the cluster.
The jobs are executed with w = 1, w = 2, w = 4 and w = 8. To
provide a better insight in the measured runtimes, we also collected
additional metrics about the each step (refactoring mining and
metric calculation) and the amount of output data generated by each
repository. Additionally, we cloned and prepared the repositories
before each run to avoid the bias of the network connection.
Evaluation hardware setting. The evaluation is done on a single
server runningmultiple virtual machines, each representing a Spark
node. The machine has four Intel Xeon E-7 4850 deca-core CPUs
and 64GB of memory. Based on this machine, each job is executed
with a limit of 7GB of memory to keep space for the master node,
the virtual machine and the Java virtual machine overheads.

4.2 Analysis of the results

Figure 2 shows the relative runtime per each repository and by
increasing the number of worker nodes in the cluster as described
before. All projects are benefitting from the parallelization approach,
especially when between one and four worker nodes. When using
eight worker nodes, the impact is less. The Apache Mahout project
is the only one that gets even worse.

Figure 2: Relative runtime per project and worker w

1 2 4 8
0

20

40

60

80

100

Number of workers

Re
la
tiv

e
tim

e
pe
rw

or
ke
r[
%]

guava
mahout
rxjava

parquet-mr
commons-io

Figure 3 visualizes the consumption of computation time be-
tween task 1 and task 2 over all projects. We decide to use the mean
value over all w-values since the ratio is more or less the same for
all w. Task 2 is in the most cases more dominant in computation
time consumption than task 1.

Table 2 contains information about the amount of found refac-
toring operations and metrics.

We also discovered that in parallelized mode some worker nodes
have a longer calculation time than others. Therefore, the variance
is calculated for w = 8 and task 1 and 2 to get an impression about
how much both tasks vary in their single runtime (table 3).

Ultimately, we consider the throughput which is basically the
number of outputs over the computation time needed to produce
those output values. The throughput should result in an under-
standable visualization of the overhead introduced through paral-
lelization. We slightly modified the throughput calculation showed

4

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

Speeding Up the Data Extraction of Machine Learning Approaches MaLTeSQuE 2020, November 13, 2020, Sacramento, USA

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

Figure 3: Mean ratio between task 1 and task 2 for each

project

0 20 40 60 80 100

guava

mahout

rxjava

parquet-mr

commons-io

Task ratio

Task 1
Task 2

Table 2: Detected refactorings and metrics per project

Repository Refactoring operations Metrics

google/guava 24732 18148
apache/mahout 16471 20861
reactivex/rxjava 41391 5654
apache/parquet-mr 5459 5500
apache/commons-io 3482 1517

Table 3: 𝜎2-comparison between Task 1 and Task 2 for w = 8

Repository Task 1 Task 2

google/guava 24.3 8.6
apache/mahout 5.3 2.0
reactivex/rxjava 73.0 66.9
apache/parquet-mr 0.6 0.3
apache/commons-io 0.4 0.5

below where wid is the id of the worker available, r is the amount
of refactorings and m the amount of metrics.

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =

∑
𝑤𝑖𝑑=1 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 (𝑤𝑖𝑑)

𝑟 +𝑚
Throughput is calculated by the accumulation of all singleworker

tasks. On a single node cluster this is just the maximum runtime.
In parallelized mode, the time of each worker is accumulated, even
when those workers are running concurrently and the effective
time is shorter. How many items less can be calculated when using
parallelization is presented in table 4.

5 DISCUSSION AND LIMITATIONS

5.1 Discussion

The results in 2 are showing that parallelization of the time dimen-
sion is has a positive impact on the overall runtime. The biggest
impact is introduced when using two and four workers, eight work-
ers minimize the runtime only by a very small amount and in case
of Mahout even add additional time. This effect can be explained

Figure 4: Throughput

1 2 4 8
0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300

Number of workers

A
m
ou

nt
of

le
ss

ite
m
sp

er
m
in
ut
e

guava
mahout
rxjava

parquet-mr
commons-io

by the nature of Spark: While jobs can run concurrently, Spark
waits until one computation step, in this case task 1 and 2, are com-
pleted. Because of reducing the heap usage, the Git history is split
in batches of size k which are typically ordered chronological. Since
the amount of files is mostly increasing over time, the first batches
have less computational effort than the ones with new commits.
Therefore some workers just do nothing until all jobs are finished.
Strengthened by table 3, the variance indicates that all job runtimes
of task 1 are much more varying than task 2. The second task gets
more homogeneous batches since for each refactoring commit one
metric can be calculated.
The task ratio table 3 represents the way of the repository usage.
Assuming that detecting refactorings is more effortful than only
calculating some software quality metrics, task 1 is mostly less com-
putational intense than task 2. The difference is how both libraries
are accessing files: RefactoringMiner reads file contents directly
from the object database, while CK needs a file system as input.
Therefore, the repository has to be checked out before each metric
calculation. This obviously takes more time than just reading the
object database.
Finally, the throughput in figure 4 shows that even when the ef-
fective runtime is decreased by parallelization, there is still some
overhead introduced through Spark and data redistribution. This
overhead is expressed by the number of less items that can be pro-
cessed. By using the accumulated time, the waiting time described
earlier is not considered.

5.2 Limitations of the framework

Git locking. The biggest limitation of the DisDrillery implemen-
tation is the Git repository itself. The locking mechanism forces
to clone the repository multiple times when parallel mining is in-
tended. Therefore each worker node is using only one core (and
therefore is single threaded) while in most Spark cluster scenar-
ios each worker is capable of multi-threading and has typically
more than one core. A local repository replication would allow
parallelization on the worker itself but may also impact disk read
negatively when accessing the repositories simultaneously.
Batching. Batching is needed to avoid out of memory exceptions
in the heap. It is also intended to reduce the instantiating frequency

5

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

MaLTeSQuE 2020, November 13, 2020, Sacramento, USA Martin Steinhauer and Fabio Palomba

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

of each mining library. Nevertheless, especially task 1 shows that
the divide and conquer approach using batches can impact the
runtime negatively when one worker finishes the mining process
much earlier than the others and parts of the cluster are running
while doing nothing.
Generalization. Currently the prototype is limited to only two
usecases: Mining refactoring operations and calculating the change
of software quality metrics. This limits the usefulness and adapt-
ability for other usecases. Hence, the steps are only slightly coupled
through the list of commit hashes but there are no definitions
about what input and output formats are available. Additionally,
the prototype shows the different repository access used by CK and
RefactoringMiner. A non-standardized repository access impacts
the distribution behavior and overall performance as seen in the
fine-grained runtime analysis.
Spark UDF. Using a Git repository directly on each worker is in
general an anti-pattern when writing Spark jobs. While the mining
operations are running within one node of the DAG, it can be seen
as a user defined function (UDF). Those functions are more or less
black boxes for Spark as it does not know the internal calculations
and can not optimize the DAG with techniques like query optimiza-
tion.
File dimension parallelization. Unlike PyDriller, the prototype
does not yet make use of parallelization of the file dimension.

6 CONCLUSION AND FUTUREWORK

The presented prototype of the DisDrillery framework clearly
shows that parallelization of the time dimension can increase the
performance in MSR. We also discussed the major issues that affect-
ing the runtime negatively and analyzed the current problems of
the implementation. Therefore, there is a lot of potential improving
the prototype in terms of parallelization as well as generalization.
The the following we are presenting further steps to optimize the
framework and make it more flexible for other mining tasks.
Replacing the file-based repository by database. This step is
needed to avoid problems introduced by file-based Git repositories
and the described locking mechanism. This approach is inspired by
the GHTorrent project [12, 13] and the Sourced project [15]. Unlike
GHTorrent, we’d like to additionally store file contents together
with meta-information about the project in a large database. To
avoid hosting problems like in Sourced and improve reproducibil-
ity, our pipeline should support the automatic generation of this
database by a given list of interesting repositories. It should be
evaluated, which storage format is most suitable in interoperability
with Spark (e.g. Apache Cassandra [14], Neo4J [7] or just simple
parquet files [1]).
Using a database as input not only avoids the file lock in git repos-
itories, it also is likely to improve the overall performance since
Spark can use query optimization and higher data distribution since
it is not limited to file-based data sources. Also, basic operations
like counting commits along a branch can be done much faster in
a structured and pre-processed environment. The pre-processing
overhead has to be evaluated.
Generalization through standardized in- and outputs Build-
ing a pipeline upon Apache Spark improves a standardized design
of each analysis step. Building well-defined in- and output formats

for each processing step raise the level of re-usability of certain
processing steps and allow further research much easier adoption
of other research questions.
Graphs by default Spark enhances big data analysis by integrated
support for graph data and adjusted, for distributed environments
optimized graph algorithms [3]. If the dataset provides access to
graph-like structures makes answering research-questions in the
area of developer-interaction much easier.
Additionally, it could be considered to store source code informa-
tion not as plain text but as graph data using abstract syntax trees
(AST). Smaller projects have already constructed such use cases in
combination with Neo4j [9, 16].
Reproducibility by default Through pre-processing, the data be-
comes much easier to deal with and besides, there is no dependency
on existing datasets because it can be generated by everyone just by
accessing the public Git API. Furthermore, Spark allows us to run
on common cloud platforms like Amazon AWS, Azure, or Google
Cloud as well as on local clusters or even on a developer’s laptop.
This makes executing the pipeline fairly easy.

REFERENCES

[1] Apache Parquet.
[2] Getting connection refused · Issue #171 · src-d/datasets. https://github.com/src-

d/datasets/issues/171.
[3] GraphX - Spark 2.4.6 Documentation. https://spark.apache.org/docs/latest/graphx-

programming-guide.html.
[4] ishepard/pydriller: Python Framework to analyse Git repositories.

https://github.com/ishepard/pydriller.
[5] JGit | The Eclipse Foundation. https://www.eclipse.org/jgit/.
[6] mauricioaniche/repodriller: a tool to support researchers on mining software

repositories studies.
[7] Neo4j Graph Platform – The Leader in Graph Databases.

https://github.com/neo4j/neo4j.
[8] M. Aniche. Java code metrics calculator (CK), 2015. Available in

https://github.com/mauricioaniche/ck/.
[9] R. Arora and S. Goel. Transforming Java projects into graphs using neo4j graph

databases. ACM International Conference Proceeding Series, pages 80–84, 2019.
[10] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.
[11] C. Gote, I. Scholtes, and F. Schweitzer. Git2net - Mining time-stamped co-editing

networks from large git repositories. IEEE International Working Conference on

Mining Software Repositories, 2019-May(i):433–444, 2019.
[12] G. Gousios. The GHTorent dataset and tool suite The GHTorent Dataset and

Tool Suite. (June), 2015.
[13] G. Gousios and D. Spinellis. GHTorrent: Github’s data from a firehose. IEEE

International Working Conference on Mining Software Repositories, pages 12–21,
2012.

[14] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[15] V. Markovtsev and W. Long. Public git archive: A big code dataset for all. Pro-
ceedings - International Conference on Software Engineering, pages 34–37, 2018.

[16] J. J. Miller. Graph database applications and concepts with neo4j. In Proceedings

of the Southern Association for Information Systems Conference, Atlanta, GA, USA,
volume 2324, 2013.

[17] G. Robles. Replicating MSR: A study of the potential replicability of papers
published in the Mining Software Repositories Proceedings. Proceedings - Inter-
national Conference on Software Engineering, pages 171–180, 2010.

[18] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File
System. In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies

(MSST), pages 1–10, may 2010.
[19] D. Spadini, M. Aniche, and A. Bacchelli. PyDriller: Python framework for mining

software repositories. ESEC/FSE 2018 - Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, pages 908–911, 2018.
[20] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig. Accurate

and efficient refactoring detection in commit history. In Proceedings of the 40th

International Conference on Software Engineering, ICSE ’18, pages 483–494, New
York, NY, USA, 2018. ACM.

6

	Abstract
	1 Introduction
	2 Background and Limitations of the State of the Art
	2.1 Related Work
	2.2 Limitations of the state of the art

	3 DisDrillery: A Distributed Framework to Support Machine Learning Research
	3.1 Implementation details

	4 Preliminary Assessment of DisDrillery
	4.1 Experimental Settings
	4.2 Analysis of the results

	5 Discussion and Limitations
	5.1 Discussion
	5.2 Limitations of the framework

	6 Conclusion and Future Work
	References

