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Abstract—Previous research demonstrated how code smells
(i.e., symptoms of the presence of poor design or implementation
choices) threat software maintainability. Moreover, some studies
showed that their interaction has a stronger negative impact on
the ability of developers to comprehend and enhance the source
code when compared to cases when a single code smell instance
affects a code element (i.e., a class or a method). While such
studies analyzed the effect of the co-presence of more smells from
the developers’ perspective, a little knowledge regarding which
code smell types tend to co-occur in the source code is currently
available. Indeed, previous papers on smell co-occurrence have
been conducted on a small number of code smell types or on
small datasets, thus possibly missing important relationships.
To corroborate and possibly enlarge the knowledge on the
phenomenon, in this paper we provide a large-scale replication
of previous studies, taking into account 13 code smell types on
a dataset composed of 395 releases of 30 software systems. Code
smell co-occurrences have been captured by using association
rule mining, an unsupervised learning technique able to discover
frequent relationships in a dataset. The results highlighted some
expected relationships, but also shed light on co-occurrences
missed by previous research in the field.

Index Terms—Code Smells; Empirical Studies; Association
Rule Mining;

I. INTRODUCTION

During software maintenance and evolution, a software
system experience several changes aimed at enhancing existing
features or fixing important bugs [1]. Developers usually
perform such changes while they are in a hurry [2], increasing
the risk to worsen the internal quality of the system by
introducing the so-called technical debts [3], i.e., not-quite-
right code possibly written in a rush to meet a deadline or to
deliver the software to the market in the shortest time possible
[3], [4], [5], [6]. Code smells, i.e., symptoms of poor design
and implementation choices [7], represent one important factor
contributing to technical debt, and possibly affecting the
maintainability of a software system [5]. In the past, and most
notably in the recent years, the research community devoted
a lot of effort in developing approaches and tool for their
automatic detection in source code [8], [9], [10], [11], [12],
[13], [14], [15], [16]. Moreover, a consistent research has
been conducted to study the impact of code smells on non-
functional attributes of source code. In particular, empirical
studies have been conducted to investigate (i) the relevance of
smells from the developers’ perspective [17], [18], (ii) their
longevity [19], [20], [21], [22], [23], and (iii) their impact
on non-functional attributes of source code, such as program

comprehension [24], change- and fault-proneness [25], [26],
and, more in general, on maintainability [27], [28], [29], [30].
Recently, Yamashita and Moonen [29] demonstrated that the
interaction of code smells consistently inhibits the ability of
developers to maintain the source code. A possible reason
behind this phenomenon has been provided by Abbes et al.
[24], which showed how the interaction of more smells have
a strong effect of program comprehension. Although these
studies empirically showed the harmfulness of the interaction
of code smells, only a little knowledge about which smells co-
occur together is available in literature. Indeed, while Bavota et
al. [31] and Palomba et al. [32] investigated the co-occurences
of test smells (i.e., bad implementation practices occurring
in test code [33]), only the works by Anubhuti et al. [34]
and Arcelli Fontana et al. [35] systematically explored the
relationships between the smells occurring in the production
code. However, such studies have been conducted taking into
account a relatively small set of code smells (i.e., 7 smells
considered by Anubhuti et al. [34] and 6 by Arcelli Fontana et
al. [35]) or a small number of object systems (i.e., Anubhuti et
al. only analyzed 2 software projects). As a consequence, these
previous works may potentially miss important relationships
between code smells.

In this paper, we aim at corroborating and possibly im-
proving the current knowledge about the phenomenon of code
smell co-occurrences, by conducting a replication study which
considers 13 code smell types having different characteristics
and different granularity on a large dataset composed of 30
open-source software systems. To derive the relationships
between the considered smells, we exploited the association
rule learning [36], a technique able to discover local patterns
highlighting attribute value conditions that occur together in
a given dataset [36]. The results of the study indicate the
presence of six pairs of code smells that frequently co-occur
together. Some relationships are quite expected (e.g., Long
Method and Spaghetti Code), while others are less obvious
and more tricky to understand, as in the case of the frequent
co-occurrence between Message Chains and Refused Bequest,
that is due to the higher probability that classes implementing
several methods have to be involved in a long chain of method
calls.

Structure of the paper. Section II discusses the related
literature about code smell co-occurrence. Section III describes
the empirical setup, while Section IV reports the results of the



study. Section V discusses the threats possibly affecting the
validity of our experiment. Finally, Section VI concludes the
paper.

II. RELATED WORK

Code smells have been widely investigated under different
perspectives. Due to space limitation, in this paper we focus
our attention only on the works analyzing the relationships
between code smells, while a detailed analysis of the detection
techniques proposed in literature is available in [37].

A number of studies have been carried out to investigate
the relationships between test smells, i.e., poor design choices
(similarly to code smells) applied by programmers when
developing test cases [33]. Bavota et al. [31] conducted an
empirical investigation in order to study (i) the diffusion of test
smells in 18 software projects, (ii) the relationships between
them, and (iii) their effects on software maintenance. The
results of the study demonstrated that 82% of JUnit classes
in their dataset are affected by at least one test smell, and that
the Assertion Roulette smell [33] is highly present together
with the other smells. Moreover, the presence of design flaws
has a strong negative impact on the maintainability of the
affected classes. The same experimental design has been used
by Palomba et al. [32] in the context of test cases automatically
generated by EvoSuite [38], observing that three test smells,
i.e., Assertion Roulette, Eager Test, and Test Code Duplication
[33], frequently occur in test classes automatically generated
by the tool.

Finally, Tufano et al. [39] performed an empirical analysis
of the co-occurrences between test and code smells in the
context of a more general investigation into the nature of
test smells. The results showed that some test and production
smells are generally related, as in the case of Assertion
Roulette and Spaghetti Code [39]. In a closely related field,
Cardoso and Figueiredo [40] explored the relationships be-
tween design patterns [41] and code smells on five open
source systems. They discovered some relationships, as in the
case of Command with God Class and Template Method with
Duplicated Code.

As for studies investigating the smells occurring in the pro-
duction code, Anubhuti et al. [34] studied the co-occurrences
of 7 code smell types in two open source projects, i.e.,
Chromium and Mozilla. In particular, they evaluated the
percentage of smells co-occurring over the change history of
such projects, finding that often traditional code smells (i.e.,
Feature Envy and Data Clumps) co-exist together with code
duplication. Unlike this work, we setup an experiment with a
larger number of systems (i.e., 30 vs 2) and a larger number
of code smells (i.e., 13 vs 7).

Yamashita et al. [42] presented a replicated study where they
analyzed the problem of code smell interaction in both open
and industrial systems, finding that the relation between smells
vary depending on the type of system taken into account. Our
study is complementary to the work by Yamashita et al. since
it considers different smells with respect to previous research.
Moreover, the code smells have been detected manually, rather

than using automatic tools. Finally, we considered a larger
number of systems (i.e., 30 vs 3).

Also Arcelli Fontana et al. [35] studied the phenomenon
of code smell co-occurrence by counting the percentage of
smells present in the same class during the history of the
software projects coming from the Qualitas Corpus [43]. The
authors found that only in a small percentage of cases (i.e.,
3% of average) a Brain Method co-occur with other smells
as Dispersed Coupling and Message Chains. Our study has
been carried out considering a larger number of smells, and
highlight several other co-occurrences between code smells.

III. EMPIRICAL STUDY DEFINITION AND DESIGN

The goal of the empirical study is to determine which code
smells co-occur together, with the purpose of identifying the
relationships between them and possibly improve code smell
detection and prioritization. The perspective is of researchers
interested in building better recommenders for developers
based on the interaction between design flaws. Formally, the
research question investigated in this paper is:

RQ: Which code smells co-occur together?

The following sections detail the context of the study and
the data extraction/analysis process.

A. Context Selection

The context of the study consists of (i) code smell types, and
(ii) object systems. As for the types of design flaws, Table I re-
ports the name of the 13 code smells studied along with a short
definition. As better described later in this Section, we needed
to limit our analysis to 13 code smells from the catalogues
by Fowler [7] and Brown et al. [44] because of the manual
detection we applied to discover instances of such smells.
However, we carefully selected code smells having different
characteristics (e.g., classes characterized by long/complex
code as well as violation of Object-Oriented principles) and
different granularity (i.e., class-level and method-level smells).

As for the object systems, our analysis is carried out on
395 releases of 30 open source systems hosted on the Git
repository. Table II reports the analyzed systems, the number
of releases considered for each of them, and their size ranges in
terms of number of classes, number of methods, and KLOCs.

B. Data Extraction

To answer our research question we firstly needed the source
code of each release taken into account. To this aim, one of
the authors identified the dates in which the major releases
of the 30 considered systems were issued. This was done by
exploiting the Git tags (often used to tag releases). Note that
we just considered major releases since those are the ones
generally representing a real deadline for developers, while
minor releases are sometimes issued just due to bug fixes or
minor changes. Once having the release dates, the source code
corresponding to the snapshots committed in that dates has
been downloaded using the git clone command.



TABLE I: The Code Smells considered in our Study

Name Description
Class Data Should Be Private (CDSBP) A class exposing its fields, violating the principle of data hiding.
Complex Class A class having at least one method having a high cyclomatic complexity.
Feature Envy A method is more interested in a class other than the one it actually is in.
God Class A large class implementing different responsibilities and centralizing most of the system processing.
Inappropriate Intimacy Two classes exhibiting a very high coupling between them.
Lazy Class A class having very small dimension, few methods and low complexity.
Long Method A method that is unduly long in terms of lines of code.
Long Parameter List (LPL) A method having a long list of parameters, some of which avoidable.
Message Chain A long chain of method invocations is performed to implement a class functionality.
Middle Man A class delegates to other classes most of the methods it implements.
Refused Bequest A class redefining most of the inherited methods, thus signaling a wrong hierarchy.
Spaghetti Code A class implementing complex methods interacting between them, with no parameters, using global variables.
Speculative Generality A class declared as abstract having very few children classes using its methods.

TABLE II: Systems involved in the study

System #Releases Classes Methods KLOCs
ArgoUML 16 777-1,415 6,618-10,450 147-249
Ant 22 83-813 769-8,540 20-204
aTunes 31 141-655 1,175-5,109 20-106
Cassandra 13 305-586 1,857-5,730 70-111
Derby 9 1,440-1,929 20,517-28,119 558-734
Eclipse Core 29 744-1,181 9,006-18,234 167-441
Elastic Search 8 1,651-2,265 10,944-17,095 192-316
FreeMind 16 25-509 341-4,499 4-103
Hadoop 9 129-278 1,089-2,595 23-57
HSQLDB 17 54-444 876-8,808 26-260
Hbase 8 160-699 1,523-8148 49-271
Hibernate 11 5-5 15-18 0.4-0.5
Hive 8 407-1,115 3,725-9,572 64-204
Incubating 6 249-317 2,529-3,312 117-136
Ivy 11 278-349 2,816-3,775 43-58
Lucene 6 1,762-2,246 13,487-17,021 333-466
JEdit 23 228-520 1,073-5,411 39-166
JHotDraw 16 159-679 1,473-6,687 18-135
JFreeChart 23 86-775 703-8,746 15-231
JBoss 18 2,313-4,809 19,901-37,835 434-868
JVlt 15 164-221 1,358-1,714 18-29
jSL 15 5-10 26-43 0.5-1
Karaf 5 247-470 1,371-2,678 30-56
Nutch 7 183-259 1,131-1,937 33-51
Pig 8 258-922 1,755-7,619 34-184
Qpid 5 966-922 9,048-9,777 89-193
Sax 6 19-38 119-374 3-11
Struts 7 619-1,002 4,059-7,506 69-152
Wicket 9 794-825 6,693-6,900 174-179
Xerces 16 162-736 1,790-7,342 62-201
Total 395 5-4,809 15-37,835 0.4-868

As for the detection of the design flaws occurring in each
release analyzed, our goal was to consider a set of smells as
close as possible to the actual set. Indeed, imprecisions in the
detection would have lead to imprecisions in the results of
the study. For this reason, we preferred to manually detect the
instances of the 13 code smells, rather than using any detector
available in literature [8], [10], [9]. This choice has been done
because the code smell detectors generally try to find a good
compromise between the precision and the completeness of
the recommendations, which lead to output a number of false
positive instances as well as to miss some true negatives. A
manual validation, instead, is supposed to be more accurate.

However, to facilitate the manual detection we developed a
simple tool that discarded the classes/methods that surely do
not contain a certain code smell. Specifically, given the type
of code smell under consideration as input, the tool analyzes

the metric profile of classes/methods and outputs a list of
code elements to further analyze manually. For instance, when
analyzing the Class Data Should Be Private, we filter out all
the classes having no public attributes because they cannot be
affected by the considered smell. The complete list of rules
used to filter out code elements is available in our online
appendix [45].

Once having the output of the tool for each of the 13 smells,
we started a two-step manual validation phase. In the first step,
two of the authors (i.e., the inspectors) individually analyzed
and classified the code elements of each system as true positive
or false positive for a given smell. The output consisted of a
list of smells identified by each inspector.

In the second step, the produced oracles were compared,
and the involved authors discussed the differences, i.e., smell
instances present in the oracle produced by one inspector,
but not in the oracle produced by the other. All the code
elements positively classified by both the inspectors have been
considered as actual smells. Regarding the other instances,
the inspectors opened a discussion in order to resolve the
disagreement and taking a shared decision. The final output
consisted of a unique list of smells that we used to answer our
research question. This list is publicly available in our online
appendix [45]. The manual validation procedure took, overall,
≈300 man-hours.

C. Data Analysis

Once gathered the data about the presence of each code
smell type in each release analyzed, we mined association
rules [36] for detecting sets of code smells that often co-occur
(i.e., affect the same code element). Association rule discovery
is an unsupervised learning technique used to detect local pat-
terns highlighting attribute value conditions that occur together
in a given dataset [36]. Formally, let I = {i1, . . . , in} be a set
of n binary attributes called items and indicating the presence
of a certain property in the element under consideration, and
let T = {t1, . . . , tm} a set of m transactions indicating the
set of all the elements analyzed, an association rule is defined
as an implication of the form X ⇒ Y , where X,Y ⊆ I and
X ∩ Y = ∅.

In our work, the set T is composed by all the classes present
in a specific system release object of our study, while each
item in the set I indicates the presence of a given smell in



that release. Therefore, the association rule analysis has been
performed at class-level, i.e., two code smells are considered
co-occurring if they affect the same class. Specifically, an
association rule CSleft ⇒ CSright, between two disjoint sets
of code smells implies that, if a class is affected by each
csi ∈ CSleft, then the same class should be affected by
each csj ∈ CSright. The strength of an association rule is
determined by its support and confidence [36]:

Support =
|CSleft ∪ CSright|

T

Confidence =
|CSleft ∪ CSright|

|CSleft|

where T is the total number of classes in the system release
under analysis. In this paper, we performed association rule
mining using a well-known algorithm, namely Apriori [36].
Such algorithm has been implemented using the arules1

library of the R toolkit [46]. Note that the minimum Support
and Confidence to consider an association rule as valid can
be set in the Apriori algorithm. Since we were only interested
in identifying meaningful association rules having high con-
fidence and support, in our study we set quite high values
for these two parameters, and in particular Support = 0.7 and
Confidence = 0.9.

D. Replication Package

The tool developed to filter out classes not affected by
design flaws, as well as the data used in the empirical study
are publicly available in our online appendix [45].

IV. ANALYSIS OF THE RESULTS

TABLE III: Co-occurrence between code smells: association
rule results.

Item Set #1 Item Set #2 Support Confidence
Complex Class Message Chains 0.94 1.0
Long Method Long Parameter List 0.94 0.99
Long Method Feature Envy 0.91 0.99
Spaghetti Code Long Method 0.90 0.98
Inappropriate Intimacy Feature Envy 0.79 0.97
Refused Bequest Message Chains 0.79 0.91

Table III reports the co-occurrences of code smells identified
in our study as result of the association rule discovery. The
identified co-occurrences are sorted based on the level of
Confidence reported by the Apriori algorithm.

The Message Chain code smell often co-occurs with the
Complex Class (supp = 0.94, conf = 1.0). Remember that a
Message Chain smell arises when a long chain of method invo-
cations is performed when one method of the affected class is
invoked, while a Complex Class is a class including methods
having a high cyclomatic complexity. We looked into these
smell instances to understand the reasons behind this strong
co-occurrence relationship. We found that often the complex
method(s) contained in the Complex Class are also the one(s)

1https://cran.r-project.org/web/packages/arules/arules.pdf

responsible for triggering the long chain of method calls result-
ing in a Message Chain code smell. For example, in the version
1.8 of Apache Ant, we found that the class FTP of the pack-
age org.apache.tools.ant.taskdefs.optional,
responsible for implementing a basic FTP client that can
send, receive, list, delete files, and create directories, is af-
fected by a Complex Class smell. At the same time, the
method accountForIncludedDir exhibits a Message
Chain smell since it recursively calls 4 different methods
belonging to different classes, resulting in a long chain of
calls.

Another interesting case concerns the co-occurrence be-
tween the Inappropriate Intimacy and the Feature Envy code
smells. An Inappropriate Intimacy smell occurs when two
classes are highly coupled, while a Feature Envy affects a
method that is more interested in (i.e., has more dependencies
toward) a class other than the one it is actually in. Our analysis
of the co-occurring instances highlighted the quite obvious
reason behind this strong relationship between the two code
smells: the presence of a Feature Envy in a method m of class
Ci clearly results in an increase of coupling between Ci and
the Cj class “envied” by m, thus promoting the introduction
of an Inappropriate Intimacy code smell between Ci and Cj .
For example, we found in Apache Xerces that the method
scanEntityDecl of the class XMLEntityHandler ex-
hibits high levels of coupling with the class StringReader,
since it needs to scan the declarations of entities by using
common functionalities provided by StringReader. Such
coupling strongly increases the number of dependencies be-
tween the two classes, resulting in an Inappropriate Intimacy
smell.

The co-occurrences between the Spaghetti Code and the
Long Method code smells (supp = 0.90, conf = 0.98 - see
Table III) is a quite expected result, dictated by the Spaghetti
Code’s definition (i.e., a class implementing complex methods
interacting between them, with no parameters and using global
variables). Given the well-known relationship between size
(method length) and complexity, it is reasonable to think
that the complex methods present in a class affected by the
Spaghetti Code smell are Long Methods.

The co-occurrences between the Message Chain and the
Refused Bequest code smells (supp = 0.79, conf = 0.91) are
less obvious and not expected. Remember that a class affected
by Refused Bequest overrides most of the methods it inherits
from its superclass. Looking inside these cases we simply
found that Refused Bequest are often classes implementing
several methods (on average 14, against the 6 implemented by
classes not affected by this smell) thus having a higher chance
of containing methods taking part in a Message Chain.

Finally, another interesting co-occurrence is the one between
the Feature Envy and the Long Method code smells. Since
Long Methods are composed of several code statements,
including of course dependencies toward other classes, they are
more likely to also being affected by the Feature Envy code
smell. Besides the relationship with Feature Envy, the Long
Method smell frequently co-occur with a Long Parameter



List one. Again, one can expect that longer methods, likely
implementing several class responsibilities, also require a
higher number of parameters, increasing the chances of also
being affected by a Long Parameter List smell.

When comparing our findings with the ones achieved in
previous studies on code smell co-occurrence [34], [35], it
is worth noting that the relationships we found have been
not experienced previously. Therefore, our results can be
considered as complementary to those reported by Anubhuti
et al. [34] and Arcelli Fontana et al. [35].

In Summary. We identified six pairs of code smells that
co-occur very often (see Table III). While some of these
co-occurrences are quite expected (e.g., Long Method and
Spaghetti Code), others are not (e.g., Message Chains
and Refused Bequest), recalling the need for studying
more deeply the reasons behind their appearance and their
apparent relationships.

V. THREATS TO VALIDITY

The main threat related to the relationship between theory
and observation (construct validity) are due to imprecision-
s/errors in the measurements we performed. While detecting
code smell instances manually, we exploited a tool in order
to facilitate our validation. The tool had the goal to discard
from the manual investigation the code elements that surely
not contain any design flaw by using conservative heuristics
to avoid the filtering of classes potentially affected by a smell.
Moreover, the set of code smells subject of this study was built
by two authors independently before discussing the the cases
of disagreement and taking a shared decision. Still, we cannot
exclude competely the presence of false positives/negatives in
our dataset.

Threats related to the relationship between the treatment
and the outcome (conclusion validity) are represented by
the analysis methods exploited in our study. Unlike other
papers on code smell co-occurrence [34], [35] we exploited
a machine learning technique for discovering hidden patterns,
i.e., association rule mining [36] rather than considering the
percentage of smells co-occurring during the change history.
In addition, practical explainations of the reasons behind the
relationships found have been proposed.

Finally, regarding the generalization of our findings (exter-
nal validity) this is, to the best of our knowledge, the largest
study—in terms of number of software releases (395), and
considered code smell types (13)—concerning the analysis of
code smell co-occurrence. However, we are aware that we
limited our attention only to Java systems. Further studies
aiming at replicating our work on systems written in other
programming languages are desirable.

VI. CONCLUSION

The interaction of code smells in the same code element has
a strong negative effect on program comprehension and ability
of developers to maintain a software project, as highlighted

by recent findings by Abbes et al. [24] and Yamashita and
Moonen [29]. While previous research focused the attention on
the analysis of the effect of the co-occurrence of more smells
in the same source code, to date a little knowledge about which
code smells generally co-occur together is available.

Indeed, previous studies on this field have been carried out
on a small set of systems [34] or on few code smell types
[35]. To enlarge the knowledge about the phenomenon, we
conducted a large scale empirical investigation involving 13
code smell types and 395 releases of 30 software systems.
Unlike previous works, the co-occurrences have been studied
by exploiting association rule mining [36], a technique spe-
cialized to detect recurring patterns in a given dataset.

The results of the study highlight six pairs of code smells
that frequently co-occur together. Some of such co-occurrences
were quite expected because of the innate relationship between
the involved smells, e.g., Long Method and Spaghetti Code or
Long Method and Long Parameter List. Besides such cases,
some relationships we found were less obvious. For instance,
we found an unexpected relationship between Message Chains
and Refused Bequest, which are due to the higher probability
classes implementing many methods have to be involved in a
long chain of method calls.

The findings of the study represent the main input for our
future research agenda. We plan to extend our investigation to
systems implemented in other programming languages, as well
as studying the possibility to build a recommendation system
able to prioritize code smell removal based on the information
about co-occurrences of smells.
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exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empirical Software Engineering, vol. 17, no. 3, pp.
243–275, 2012.

[27] D. I. K. Sjøberg, A. F. Yamashita, B. C. D. Anda, A. Mockus, and
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