
Social Debt Analytics for Improving the
Management of Software Evolution Tasks

Fabio Palomba
Delft University of Technology

Eindhoven University of Technology
The Netherlands

f.palomba@tudelft.nl
f.palomba@tue.nl

Alexander Serebrenik
Eindhoven University of Technology

The Netherlands
a.serebrenik@tue.nl

Andy Zaidman
Delft University of Technology

The Netherlands
a.e.zaidman@tudelft.nl

Abstract—The success of software engineering projects is in
a large part dependent on social and organization aspects of
the development community. Indeed, it not only depends on the
complexity of the product or the number of requirements to
be implemented, but also on people, processes, and how they
impact the technical side of software development. Social debt
represents patterns across the organizational structure around a
software system that may lead to additional unforeseen project
costs. Condescending behavior, disgruntlement or rage quitting
are just some examples of social issues that may occur among the
developers of a software project. While the research community
has recently investigated the underlying dynamics leading to the
introduction of social debt (e.g., the so-called “community smells”
which represent symptoms of the presence of social problems in
a community), as well as how such debt can be payed off, there
is still a noticeable lack of empirical evidence on how social
debt impacts software maintenance and evolution. In this paper,
we present our position on how social debt can impacts technical
aspects of source code by presenting a road map toward a deeper
understanding of such relationship.

I. RESEARCH PROBLEM AND MOTIVATION

Software engineering is clearly characterized by two main
components, i.e., technical and social [39]. While the former
is related to the processes aimed at producing sound technical
products that meet the expected requirements, the latter has to
do with the relationships involving organizations, developers,
and stakeholders who are responsible for the definition of the
technical product [12]. According to the Netherlands Knowl-
edge and Innovation Agenda ICT 2016 - 2019, “software and
system complexity is not solely of technological nature but
also defined by people and processes”1. Indeed, the success of
software engineering projects is strongly dependent on social
and organization aspects of the development community [11].

In past and recent years the software evolution research
community has actively focused on technical aspects of soft-
ware projects, by (i) understanding the key factors making
technical products easier to maintain [2], [4], [10], [29], [32],
[44], [48] or (ii) devising techniques and tools to support
developers during different evolutionary tasks [17], [25], [31],
[36], [45]. For example, Cunningham [14] introduced the

1https://www.4tu.nl/nirict/en/Research/knowledge-and-innovation-agenda-
ict-2016-2020.pdf

metaphor of technical debt, which refers to practices per-
formed by developers that lead to the introduction of bad
design solutions that will turn in an additional cost during
software maintenance and evolution. One noticeable symptom
of technical debt is the presence of code smells [19], i.e.,
bad programming practices applied by developers that lead
the source code to be less maintainable and more change- and
fault-prone [30].

On the other hand, software communities have been the
subject of several empirical investigations as well [5], [9], [15],
[33], [40], [41]: in particular, they have mainly focused on how
such communities evolve [21], [27], [28], [47], while they only
partially considered the relationships between community-
related information and software maintenance and evolution of
technical products. Indeed, such studies especially targeted the
so-called social debt, i.e., unforeseen project cost connected to
a “suboptimal” development community (i.e., both in structure
and behavior) [42], [43]. For instance, Tamburri et al. [41],
[43] defined a set of community smells, a set of socio-technical
characteristics (e.g., high formality) and patterns (e.g., recur-
rent condescending behavior, or rage-quitting), which may
lead to the emergence of social debt. One of the typical
community smells they found is the Organizational Silo Effect,
which arises when a software community presents siloed
areas that essentially do not communicate, except through
one or two of their respective members: as a consequence,
the development activities might be delayed due to lack of
communication between developers.

Besides the studies on social debt, a consistent number
of empirical analyses have been carried out on the so-called
socio-technical congruence [8], i.e., the alignment between co-
ordination requirements extracted from technical dependencies
among tasks and the actual coordination activities performed
by the developers. While studies in this category had the
intention to investigate the relationship between social and
technical sides of software communities (e.g., studying how
the collaboration among developers influence their productiv-
ity [16], [18]), we believe there is still a lack of evidence
on their connection, i.e., how social-related issues occurring
among the developers of a software project and indicated
by the presence of social debt might impact the quality of



both technical products and processes. In other words, it is
still unclear whether factors like coordination issues, lack of
communication, or structure of development community have
an effect on the quality of source code (e.g., code smells [19])
or the quality of software processes (e.g., code review [2] and
bug resolution [22] completion time). We believe that such
relationship is of a paramount importance for enlarging the
knowledge on how software systems evolve and how to prop-
erly support developers along with software evolution. While
some exploratory studies in this direction have been conducted
in the domain of requirements engineering for coordination by
Cataldo et al. [8] and Kwan et al. [24], both these lines of
inquiry and related research are still far from relating social
and technical debt with the goal of comprehending their co-
creation and evolution.

In this paper, we present our position about the relation-
ship between social and technical aspects of source code by
describing our road map toward its proper management.

II. ON THE RELATIONSHIP BETWEEN SOCIAL AND
TECHNICAL DEBT

The first envisioned step toward the exploration of the con-
nection between social and technical debt is to assess whether
such relationship actually exists and, as a consequence, what
its strength is. In particular, we hypothesize that community-
related issues can be the cause of introducing technical debt.
To verify this hypothesis, we believe that future research
effort should be devoted to design a number of empirical
investigations aimed at characterizing the interaction between
the two aspects, including but not limited to:

1) How social debt impact the presence of technical debt.
As briefly explained in the previous section, commu-
nity smells indicate frequent negative patterns over a
software community organization that might result in
additional project costs. We suppose that such project
costs can be basically due to (i) pure social-related issues
raising between developers and (ii) technical issues
arising in the source code. While the causes behind ad-
ditional costs due to the presence of social issues within
communities [5], [9], [15], [34], an important challenge
for the research community is that to assess the extent to
which additional technical costs are due to social debt.
Specifically, we believe that future research should focus
on the relationship between social debt, e.g., measured
in terms of community smells [41], and technical aspects
such as (i) presence of code smells and (ii) introduction
of defects. In the first case, a clear real-case scenario
might involve the presence of sub-communities that do
not communicate with each other (e.g., in presence of
a Organizational Silo smell) that, as a consequence, are
not able to come up with a correct way to modularize the
different modules of the systems they are developing,
thus possibly introducing architectural or code smells
like Promiscuous Package or Blob [7], [19]. In the
second case, it is reasonable to think that the presence

of issues within a community might lead developers to
misunderstand requirements implementation or design
choices to apply, thus possibly introducing bugs. For
instance, Kwan et al. [24] suggested that social debt
not only impacts software build success, but also may
contribute to worsen program comprehension.

2) How different software community types are affected
by technical debt. As clearly visible looking at the
modern software development practices, current systems
heavily rely on open-source software (OSS) [13], [35].
Indeed, over the past years OSS has moved from an
academic curiosity to a mainstream focus within soft-
ware communities [13]. Despite their high popularity,
open-source development communities rarely rely on
governance insights from organizations research and/or
tracking their organizational status using social networks
analysis (SNA) [23], e.g., to evaluate the current salient
social and organizational characteristics describing their
community. Such a lack of structured information might
lead to two undesirable consequences. On the one hand,
the implosion of the community: for example, an in-
creasing number of reflections and empirical evidence
over abandonware [26], [37] or even failure of entire
open-source forges indicates the need to understand and
better support the organizational and social aspects of
open-source communities [20], [38]. On the other hand,
the introduction of specific technical debt based on
the underlying community type of a software project:
for instance, communities characterized by the presence
of formal vs informal communications might suffer of
different technical issues due to the different nature of
developers’ interactions. Thus arises the need to support
clients of OSS in the evaluation of the risks associated
to the usage of such open-source code in their systems.
Therefore, an important challenge is represented by a
deeper analysis of (i) how to automatically identify the
key characteristics of different community types so that
they can be classified and (ii) to what extent different
community types exhibit different technical debt such as
code smells or bugs.

To face the challenges described so far, a mixture of
quantitative and qualitative analyses is required. Indeed, on
the one the assessment of the relationship between social and
technical debt needs to be performed by means of correlation,
statistical, and predictive analyses. On the other hand, surveys
or semi-structured interviews with developers might reveal
additional insights on such a relationship, possibly explaining
(i) the motivations behind it and (ii) effective ways to re-
organize software communities to remove social debt.

III. ON THE IMPACT OF SOCIAL DEBT ON TECHNICAL
TASKS COMPLETION EFFORT

Once we have assessed the actual relationship between
social and technical debt of software systems, the subsequent
step that we envision is to determine the impact of community-
related aspects on different evolutionary tasks performed by



developers during software maintenance. In particular, we
believe that poor communication between developers increases
the time needed to complete technical tasks such as code re-
view, issue resolution, etc. This set of empirical investigations
include:

1) How social debt impacts code review and bug resolution
time. The modern assessment of software quality during
maintenance and evolution is typically guided by mod-
ern code reviews [2]: In a typical code review, one or
more developers dress the role of reviewers and verify
that the proposed source code changes meet the quality
requirements with respect to readability, maintainability,
and the absence of defects, before being deployed into
production. In this context, social issues occurring within
the development community might influence this process
in two different ways: (i) how source code is reviewed,
i.e., the quality of a review, and (ii) the time needed to
verify that the changes applied meet the requirements.
Indeed, following the socio-technical argumentations
proposed so far [8], [24], problems in the technical
development may be a reflection of issues occurring at
the community-level. At the same time, another critical
software engineering process during maintenance and
evolution is related to the way developers fix bugs [1]:
on the one hand, we believe that the research community
should focus on investigations aimed at understanding (i)
how the presence of community-related issues impacts
the ability to diagnose bugs and (ii) whether the time
needed to resolve a bug is higher when the reviewer is
involved in social debt.

2) How social debt impacts maintenance effort estimation
models. Since its birth, software effort estimation has
represented the Holy Grail of software engineering [6],
since it supports project managers in the correct esti-
mation of effort and costs needed to develop a software
system. The problem is still more tricky when it comes
to the maintenance and evolution: indeed, this phase
is responsible for more than 80% of the total cost of
software [3]. While some researchers proposed the use
of product and process metrics for estimating the effort
estimation of future maintenance tasks [46], following
the conjectures reported previously in this section we
believe that a promising challenge is to exploit social
debt as additional factors to correctly estimate the costs
of maintenance and evolution tasks.

IV. IMPROVING SOFTWARE EVOLUTION TOOLS BY
EXPLOITING SOCIAL DEBT

Based on the results achieved from the studies described
in Sections II and III, several software evolution tools might
be improved by means of social debt analysis. For instance,
it would be possible to study solutions aimed at (i) detecting
social debt in software communities (e.g., by means of social
network analysis techniques), (ii) prioritizing technical debt
based on the co-occurrence of social debt, (iii) improving code

review and bug resolution tools by exploiting social debt when
recommending the developers that should perform such tasks,
and (iv) improving maintenance effort estimation capabilities
adding social debt information as additional predictors. The
results of such line of research are intended to be useful for
both managers, interested in solving potential social issues
in a community, and developers, interested in estimating the
effort—social and technical—required for maintaining the
source code. Finally, the research might set a research agenda
for socio-technical factors in software development.

V. CONCLUSION

Social debt is a manifestation of issues occurring within a
software development team. For instance, community smells
reflect sub-optimal organizational and socio-technical char-
acteristics or patterns in the organizational structure of the
software community. Much in the same way, technical debt
represents sub-optimal solutions applied by programmers dur-
ing the development of technical artifacts. Recent empirical
studies provided some insights into a possible relationships
between them that, however, has not been shown yet.

In this paper, we highlight a possible outline of future
research on the relationship between social and technical debt
arising in software systems, by describing a set of empirical
studies that might lead to a more comprehensive understanding
of the phenomenon. Starting from the connection between
symptoms of the presence of social and technical debt, i.e.,
community and code smells, important challenges for the soft-
ware evolution research community include the understanding
of (i) how different software development community types
are affected by social and technical debt, (ii) how different
software development practices, such as code review, bug
resolution, or effort estimation might be impacted by issues
occurring at community-level, and (iii) whether and to what
extent current software quality evaluation techniques and tools
can be improved by exploiting social debt information.

We believe that such challenges would help in the deeper
understanding of how software systems evolve and how
community-related factors impact this process.

VI. ACKNOWLEDGMENT

Fabio Palomba is funded by the 4TU-NIRICT project
“Social Aspects of Software Quality”. Any opinions, findings,
and conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Pro-
ceedings of the 28th international conference on Software engineering,
pages 361–370. ACM, 2006.

[2] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges
of modern code review. In Proceedings of the 2013 international
conference on software engineering, pages 712–721. IEEE Press, 2013.

[3] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig. Software
complexity and maintenance costs. Communications of the ACM,
36(11):81–95, 1993.

[4] P. Bhattacharya and I. Neamtiu. Fine-grained incremental learning
and multi-feature tossing graphs to improve bug triaging. In Software
Maintenance (ICSM), 2010 IEEE International Conference on, pages
1–10. IEEE, 2010.



[5] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu. Putting
it all together: Using socio-technical networks to predict failures. In
Proceedings of the 2009 20th International Symposium on Software
Reliability Engineering, ISSRE ’09, pages 109–119, Washington, DC,
USA, 2009. IEEE Computer Society.

[6] L. C. Briand and I. Wieczorek. Resource estimation in software
engineering. Encyclopedia of software engineering, 2002.

[7] W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray.
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1998.

[8] M. Cataldo, J. D. Herbsleb, and K. M. Carley. Socio-technical con-
gruence: a framework for assessing the impact of technical and work
dependencies on software development productivity. In H. D. Rombach,
S. G. Elbaum, and J. Mnch, editors, Proceedings of the Int’l Symposium
on Empirical Software Engineering and Measurement (ESEM), pages
2–11. ACM, 2008.

[9] M. Cataldo and S. Nambiar. The impact of geographic distribution
and the nature of technical coupling on the quality of global software
development projects. Journal of Software: Evolution and Process,
24(2):153–168, 2012.

[10] A. Chatzigeorgiou and A. Manakos. Investigating the evolution of code
smells in object-oriented systems. Innov. Syst. Softw. Eng., 10(1):3–18,
Mar. 2014.

[11] M. Conway. How do committees invent. Datamation, 14(4):28–31,
1968.

[12] M. E. Conway. How do committees invent. Datamation, 14(4):28–31,
1968.

[13] K. Crowston, K. Wei, J. Howison, and A. Wiggins. Free/libre open-
source software development: What we know and what we do not know.
ACM Computing Surveys (CSUR), 44(2):7, 2012.

[14] W. Cunningham. The wycash portfolio management system. SIGPLAN
OOPS Mess., 4(2):29–30, Dec. 1992.

[15] S. Datta, R. Sindhgatta, and B. Sengupta. Evolution of developer
collaboration on the jazz platform: a study of a large scale agile project.
In Proceedings of the 4th India Software Engineering Conference, ISEC
’11, pages 21–30, New York, NY, USA, 2011. ACM.

[16] C. R. de Souza and D. F. Redmiles. On the roles of apis in the co-
ordination of collaborative software development. Computer Supported
Cooperative Work (CSCW), 18(5-6):445, 2009.

[17] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and
A. De Lucia. A developer centered bug prediction model. IEEE
Transactions on Software Engineering, 2017.

[18] S. B. Fonseca, C. R. De Souza, and D. F. Redmiles. Exploring the
relationship between dependencies and coordination to support global
software development projects. In Global Software Engineering, 2006.
ICGSE’06. International Conference on, pages 243–243. IEEE, 2006.

[19] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[20] J. Gamalielsson and B. Lundell. Sustainability of open source software
communities beyond a fork: How and why has the libreoffice project
evolved? Journal of Systems and Software, 3(11):128–145, 2013.

[21] Y. Gao, V. Freeh, and G. Madey. Analysis and modeling of the open
source software community. NAACSOS, Pittsburgh, 2003.

[22] G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage with
bug tossing graphs. In Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 111–120.
ACM, 2009.

[23] D. Knoke and S. Yang. Social network analysis, volume 154. Sage,
2008.

[24] I. Kwan, A. Schroter, and D. Damian. Does socio-technical congruence
have an effect on software build success? a study of coordination in a
software project. IEEE Trans. Softw. Eng., 37(3):307–324, May 2011.

[25] M. Lanza. The evolution matrix: Recovering software evolution using
software visualization techniques. In Proceedings of the 4th interna-
tional workshop on principles of software evolution, pages 37–42. ACM,
2001.

[26] T. Mens, M. Claes, P. Grosjean, and A. Serebrenik. Studying evolving
software ecosystems based on ecological models. In Evolving Software
Systems, pages 297–326. Springer, 2014.

[27] T. Mens and M. Goeminne. Analysing the evolution of social aspects of
open source software ecosystems. In IWSECO@ ICSOB, pages 1–14,
2011.

[28] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye.
Evolution patterns of open-source software systems and communities.
In Proceedings of the international workshop on Principles of software
evolution, pages 76–85. ACM, 2002.

[29] W. Oizumi, A. Garcia, L. da Silva Sousa, B. Cafeo, and Y. Zhao.
Code anomalies flock together: Exploring code anomaly agglomerations
for locating design problems. In Software Engineering (ICSE), 2016
IEEE/ACM 38th International Conference on, pages 440–451. IEEE,
2016.

[30] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia. On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation. Empirical Software
Engineering, pages 1–34, 2017.

[31] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and
A. D. Lucia. Mining version histories for detecting code smells. IEEE
Transactions on Software Engineering, 41(5):462–489, May 2015.

[32] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia.
The scent of a smell: An extensive comparison between textual and
structural smells. IEEE Transactions on Software Engineering, 2017.

[33] M. Pinzger, N. Nagappan, and B. Murphy. Can developer-module
networks predict failures? In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, SIG-
SOFT ’08/FSE-16, pages 2–12, New York, NY, USA, 2008. ACM.

[34] L. Prattico. Governance of open source software foundations: Who holds
the power? Technology Innovation Management Review, 1(12):37–42,
2012.

[35] K. Raju. Is the Future of Software Development in Open Source?
Proprietary vs Open Source Software: A Cross Country Analysis.
Journal of Intellectual Property Rights, Vol. 12, No. 2, March 2007,
12(2):21–42, 2007.

[36] R. Robbes and M. Lanza. A change-based approach to software
evolution. Electronic Notes in Theoretical Computer Science, 166:93–
109, 2007.

[37] G. Robles, J. M. González-Barahona, C. Cervigón, A. Capiluppi, and
D. Izquierdo-Cortázar. Estimating development effort in free/open
source software projects by mining software repositories: a case study
of openstack. In Proceedings of the 11th Working Conference on Mining
Software Repositories, pages 222–231. ACM, 2014.

[38] C. M. Schweik. Sustainability in open source software commons:
Lessons learned from an empirical study of sourceforge projects. Tech-
nology Innovation Management Review, 3:13–19, 01/2013 2013.

[39] I. Sommerville. Software Engineering. Addison-Wesley, Harlow,
England, 9. edition, 2010.

[40] D. Surian, D. Lo, and E.-P. Lim. Mining collaboration patterns from a
large developer network. In WCRE, pages 269–273, 2010.

[41] D. A. Tamburri, R. Kazman, and H. Fahimi. The architect’s role in
community shepherding. IEEE Software, 33(6):70–79, 2016.

[42] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet. What is social
debt in software engineering? In ICSE - CHASE Workshop Series, pages
40–49, 2013.

[43] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet. Social debt in
software engineering: insights from industry. J. Internet Services and
Applications, 6(1):10:1–10:17, 2015.

[44] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. D.
Lucia, and D. Poshyvanyk. When and why your code starts to smell
bad (and whether the smells go away). IEEE Transactions on Software
Engineering, PP(99):1–1, 2017.

[45] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. Deep learning
code fragments for code clone detection. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, pages 87–98. ACM, 2016.

[46] H. Wu, L. Shi, C. Chen, Q. Wang, and B. Boehm. Maintenance effort
estimation for open source software: A systematic literature review. In
Software Maintenance and Evolution (ICSME), 2016 IEEE International
Conference on, pages 32–43. IEEE, 2016.

[47] J. Xu, Y. Gao, S. Christley, and G. Madey. A topological analysis of
the open souce software development community. In System Sciences,
2005. HICSS’05. Proceedings of the 38th Annual Hawaii International
Conference on, pages 198a–198a. IEEE, 2005.

[48] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. Van Deursen. Mining
software repositories to study co-evolution of production & test code.
In Software Testing, Verification, and Validation, 2008 1st International
Conference on, pages 220–229. IEEE, 2008.


