
Evaluating the Adaptive Selection of Classifiers for
Cross-Project Bug Prediction

Dario Di Nucci
Vrjie Universiteit Brussel, Belgium

ddinucci@vub.ac.be

Fabio Palomba
University of Zurich, Switzerland

palomba@i�.uzh.ch

Andrea De Lucia
University of Salerno, Italy

adelucia@unisa.it

ABSTRACT

Bug prediction models are used to locate source code elements
more likely to be defective. One of the key factors in�uencing
their performances is related to the selection of a machine learning
method (a.k.a., classi�er) to use when discriminating buggy and
non-buggy classes. Given the high complementarity of stand-alone
classi�ers, a recent trend is the de�nition of ensemble techniques,
which try to e�ectively combine the predictions of di�erent stand-
alone machine learners. In a recent work we proposed ASCI, a
technique that dynamically select the right classi�er to use based
on the characteristics of the class on which the prediction have to be
done. We tested it in a within-project scenario, showing its higher
accuracy with respect to the Validation and Voting strategy. In
this paper, we continue on the line of research, by (i) evaluating
ASCI in a global and local cross-project setting and (ii) comparing
its performances with those achieved by a stand-alone and an
ensemble baselines, namely Naive Bayes and Validation and
Voting, respectively. A key �nding of our study shows that ASCI
is able to perform better than the other techniques in the context
of cross-project bug prediction. Moreover, despite local learning is
not able to improve the performances of the corresponding models
in most cases, it is able to improve the robustness of the models
relying on ASCI.

CCS CONCEPTS

•Software and its engineering→ Software maintenance;

KEYWORDS

Bug Prediction; Cross-project; Ensemble Classi�ers

1 INTRODUCTION

Bug prediction is the branch of software engineering that aims at
discovering which are the source code elements more prone to be
a�ected by faults so that developers may carry out focused testing
activities [19]. Besides the adoption of unsupervised techniques
prioritizing inspection and testing tasks based on (i) self-organizing
maps [10], (ii) topic modeling [31], or (iii) connectivity metrics [46],
the research community has been widely studying the usage of su-
pervised techniques, which involve the de�nition of bug prediction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or
a fee. Request permissions from permissions@acm.org.
RAISE 2018, Gothenburg, Sweden

© 2018 ACM. 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123_4

models relating a set of independent variables (a.k.a., predictors) to
the bug-proneness of code artifacts using machine learning meth-
ods [19]. Such models can be trained using a su�cient amount
of labeled data coming from (i) the previous history of the same
project where the model is applied to, i.e. using a within-project

strategy, or (ii) other similar projects, i.e. using a cross-project strat-
egy.

Previous studies showed that within-project bug prediction mod-
els have higher capabilities than cross-project ones since they rely
on data that represents better the characteristics of the source
code elements of the project where the models have to be applied
[44]. As a drawback, a within-project training strategy cannot
often be adopted in practice since new projects might not have
enough data to setup a bug prediction model [48]. As a conse-
quence, the research community has started investigating ways to
make cross-project bug prediction models more e�ective with the
aim of allowing a wider adoption of bug prediction models [27, 21].
For instance, Menzies et al. [25] recently proposed the concept of
local bug prediction introducing a technique that (i) �rstly clusters
homogeneous data coming from di�erent projects with the aim of
reducing its heterogeneity and (ii) then builds for each cluster a
di�erent model using the Naive Bayes classi�er [30]. The empirical
analysis showed that such a technique can signi�cantly improve
the performances of global bug prediction models, thus paving the
way for a re-visitation of cross-project techniques.

Looking at the literature on cross-project bug prediction, it is
clear that one of the factors that impacts more the performances of
such techniques is represented by the choice of the machine learn-
ing method used to discriminate buggy and non-buggy instances:
as a matter of fact, Ghotra et al. [16] demonstrated that a wrong
selection of the classi�er might impact the model capabilities up
to 30%; perhaps more importantly, Panichella et al. [34] found that
di�erent classi�ers perform similarly, being however highly com-
plementary. As a direct consequence of these �ndings, researchers
have tried to exploit the complementarity among di�erent classi-
�ers by means of ensemble techniques, that is, methodologies able
to combine together di�erent classi�ers to improve bug prediction
performances [36, 13, 5, 45, 34, 24]. For instance, Misirli et al. [43]
proposed the Validation and Voting strategy, a two-step method
that �rstly builds a set of bug prediction models relying on di�erent
classi�ers, and then predicts a class as buggy in case the majority
of models predict the bugginess of the class.

More recently, we proposed a novel ensemble technique, coined
ASCI (Adaptive Selection of Classi�ers in bug predIction) [13], able
to dynamically select among a set of machine learning classi�ers
the one which better predicts the bug proneness of a class based
on its characteristics. We tested its performances in an empirical
study involving 30 software systems, where we trained ASCI in a

1

Figure 1: ASCI - Work�ow.

within-project setting. As a result we found that ASCI was able to
achieve higher performances than (i) the base classi�ers used to
build it and (ii) the Validation and Voting ensemble classi�er.

In this paper, we aim at making a further step ahead by evalu-
ating ASCI in a cross-project setting, considering both global and
local training strategies. The study was conducted on a Promise
dataset composed of 10 software systems, where we applied a num-
ber of corrections suggested by Shepperd et al. [38] in order to
make it cleaned and suitable for our purpose. We compared our
technique with Validation and Voting and Naive Bayes, that
we found to be the best stand-alone classi�er in the context of our
study.

The results suggest that the problem of predicting bugs using
cross-project information is still far to be solved, since none of the
experimented models exceed 40% in terms of F-Measure. The use
of ensemble techniques improves the performances of prediction
models, and indeed ASCI is the classi�er performing better than
Naive Bayes and Validation and Voting when considering the
F-Measure and AUC-ROC. At the same time, we found that the
local learning in most cases is not able to e�ectively reduce data
heterogeneity and improve the performances obtained by the mod-
els. Despite this, we found that combining ASCI with local learning
leads to more robust models.

Structure of the paper. Section 2 discusses the previous achieve-
ments attained by the research community. In Section 3 we describe
the methodology followed to conduct the empirical study. Section
4 analyzes the results, as well as possible threats to validity. Finally,
Section 5 concludes the paper and describes our future research
agenda on the topic.

2 BACKGROUND AND RELATEDWORK

This section summarizes the related literature and reports an overview
of ASCI.

2.1 Related Literature

For sake of space limitations, we only brie�y summarize the papers
on cross-project bug prediction and ensemble techniques on which
this study builds upon.

Cross-project bug prediction. Cross-project bug prediction
models are based on the usage of data coming from external (simi-
lar) projects to train a machine learner able to discriminate buggy
and non-buggy instances in the project currently being analyzed
[48]. While most of the research made in this area investigated
which are the most e�cient features to use in cross-project mod-
els to correctly capture the bugginess of software classes [19], a
notable e�ort has been also devoted to how to make external data
suitable for the project under analysis [25]. The latter problem
aims at dealing with the fact that cross-project models su�er data
heterogeneity, i.e. external data might be di�erent with respect
to the one available in the project to analyze, thus worsening the
performances of bug prediction models. One of most recent ad-
vances in this area is represented by the so-called local learning

methods. These approaches do not have the goal to �lter training
data but rather that of building a specialized bug prediction model
for each cluster of the training data. Menzies et al. [25] studied for
the �rst time the e�ectiveness of local learning, �nding that it can
substantially improve the performances of bug prediction models
with respect to global models.

Ensemble techniques. The need of using ensemble techniques
comes from previous studies that showed that there is no classi�er
able to clearly outperform the others [4], since their performance
strongly depend on the speci�c dataset considered [15]. More
importantly, Ghotra et al. [16] highlighted that the selection of
an appropriate classi�er might lead bug prediction models to be
more or less e�ective by up to 30%, while Panichella et al. [34]
demonstrated that the predictions of di�erent classi�ers are highly
complementary despite the similar prediction accuracy.

Thus, the identi�cation of the classi�er to use is not a trivial task
and for this reason a lot of e�ort has been devoted to the de�nition
of so-called ensemble techniques, i.e. methodologies able to com-
bine di�erent classi�ers with the aim of improving bug prediction
performances. Misirli et al. [43] devised the Validation and Vot-
ing technique, that is a method to combine the output of di�erent
classi�ers using an aggregating function. More speci�cally, the
technique predicts a class as buggy in case the majority of models
(obtained running di�erent classi�ers on the same training set)
predicts the bugginess of a class; otherwise, the class is predicted
as bug-free. Other techniques proposed in literature are based on
the Bagging ensemble technique [36], which combines the out-
puts of di�erent models trained on a sample of instances taken
with a replacement from the training set. For instance, Kim et al.
[23] combined multiple training data obtained applying a random
sampling. More recently, some approaches inspired to the Stacking
ensemble technique [36] have been proposed [34, 35]. They use a
meta-learner to induce which classi�ers are reliable and which are
not and consider the predictions of di�erent classi�ers as input for
a new classi�er.

Speci�cally, Panichella et al. [34] devised CODEP, an approach
that �rstly applies a set of classi�ers independently, and then uses
the output of the �rst step as predictors of a new prediction model
based on Logistic Regression. Zhang et al. [47] conducted a similar
study as the one performed by [34] comparing di�erent ensemble
approaches. They found that there exist several ensemble tech-
niques that improve the performances achieved by CODEP, and

2

Validation and Voting is often one of them. Petric et al. [35]
used 4 families of classi�ers in order to build a Stacking ensem-
ble technique [36] based on the diversity among classi�ers in the
cross-project context. Their empirical study showed that their ap-
proach can perform better than other ensemble techniques and that
the diversity among classi�ers is an essential factor. Furthermore,
it is worth mentioning the work by Wang et al. [45], who com-
pared the performances achieved by seven ensemble techniques,
each of them belonging to a di�erent category, in the context of
within-project bug prediction, showing that often Validation and
Voting stands out among them.

2.2 Adaptive Selection of Classi�ers

Figure 1 reports the main steps adopted by ASCI to recommend
which classi�er should be used for evaluating the bugginess of a
class. More speci�cally:

(1) Let C = {c1, ..., cn } be a set of n di�erent stand-alone
machine learners, and let T = {e1, ..., em } be the set of
classes composing the training set. Each ci ∈ C is run
against the set T , so that the predictions of each classi�er
for each ej ∈ T are collected.

(2) After the �rst step, each ej ∈ T is labeled with the in-
formation regarding the classi�er ci ∈ C which correctly
identi�ed its bugginess. Two possible scenarios can arise.
If only one classi�er ci is able to predict the bug-proneness
of ej , then ej will be associated with ci . Conversely, if more
classi�ers or none of them correctly identi�ed the buggi-
ness of ej , the classi�er ci having the highest F-Measure
on the whole training set is assigned to ej . As output of
this step, an annotated training set T ′ is created.

(3) In the last step, based on T ′, ASCI builds a classi�er pre-

diction model using a decision tree DT as classi�er. In
other words, given the code metrics of the classes in the
annotated training set as independent variables, it aims at
predicting which classi�er ci ∈ C should be used for that
class. Thus, a prediction consists of a nominal value indi-
cating the name of the classi�er ci ∈ C that is considered
as most indicated to properly classify the bug-proneness
of ej ∈ T .

It is worth noting that in our previous work [13] we evaluated
ASCI in the within-project context, comparing it with (i) the base
classi�ers used to build it, i.e. Naive Bayes, Logistic Regression,
Multi Layer Perceptron, J48, Radial Basis Function Network, and
(ii) the Validation and Voting ensemble classi�er.

3 EMPIRICAL STUDY DESIGN

The goal of the study is to evaluate how ASCI works when adopted
for cross-project bug prediction and what is the e�ect of local learn-
ing on its performances. The speci�c research questions formulated
are the following:

• RQ1. How doesASCIwork in the context of cross-project bug

prediction when compared to existing ensemble techniques?

• RQ2. To what extent can local learning improve the perfor-

mances of ASCI?

Table 1: Characteristics of the software systems used in the

study

Project Release Classes KLOC Buggy Classes (%)

1 Ant 1.7 745 208 166 22%
2 ArcPlatform 1 234 31 27 12%
3 InterCafe 1 27 11 4 15%
4 Ivy 2.0 352 87 40 11%
5 pBeans 2 51 15 10 20%
6 Serapion 1 45 10 9 20%
7 Synapse 1.2 256 53 86 34%
8 SystemDataManagement 1 65 15 9 14%
9 TermoProjekt 1 42 8 13 31%
10 Tomcat 6 858 300 77 9%

The �rst research question (RQ1) aims at assessing the per-
formances of our approach in the context of cross-project bug
prediction, while RQ2 is focused on the combination between
local learning and the adaptive selection of classi�ers.

3.1 Context Selection and Data Preprocessing

The context of the study was composed of the 10 software systems
shown in Table 1, which reports the speci�c releases taken into
account as well as the detailed characteristics of the projects consid-
ered in terms of (i) size, expressed as number of classes and KLOC,
and (ii) number and percentage of buggy classes. Starting from
the Promise dataset [26], we (i) �ltered out systems having more
than 50% of buggy classes as recommended by Tantithamthavorn
et al. [40] to ensure data robustness, and (ii) randomly selected
10 projects from the remaining ones. It is important to highlight
that the considered dataset already contained both independent
and dependent variables used to build the bug prediction models.
Indeed, for each class of the considered systems the independent
variables were represented by LOC and Chidamber and Kemerer
metrics [8], while the dependent variable was represented by a
boolean value indicating the bugginess of each class.

Once we selected the dataset, we applied the following data
preprocessing activities:

(1) Data Cleaning. As shown by Shepperd et al. [38], the
Promise repository might contain noise and/or erroneous
entries that possibly bias the results of bug prediction mod-
els. To deal with this issue, we applied the 13 corrections
they proposed to remove instances with con�icting values
or presenting missing values. From the initial dataset com-
posed of 5,422 instances, we removed '1% of them. Thus
the �nal dataset was composed of 5,361 instances.

(2) Data Normalization. A second element that could badly
a�ect the performance of the prediction models is related
to the di�erent levels of design-complexity metrics [6]. To
overcome this issue, we applied the normalization �lter
implemented in Weka [17] which linearly normalizes the
data in the [0,1] interval. It is important to note that the
choice of this normalization technique came from the re-
sults provided by Nam et al. [29] and Herbold et al. [22],
who showed that such a technique represents the best one
for this task.

3

(3) Feature Selection. Highly correlated independent vari-
ables can negatively a�ect the capabilities of bug pre-
diction models [32]. To avoid this issue, we applied the
Correlation-based Feature Selection (CFS) approach [18].
This method uses correlation measures and a heuristic
search strategy to identify a subset of actually relevant
features for a model. It is worth noting that we applied
CFS for each training set obtained from the Leave-One-

Out cross validation process, described later in Section 3.2.
Thus, we �rstly combined the training instances belong-
ing to di�erent software systems and then we applied the
feature selection algorithm, as recommended by Hall et al.
[19].

(4) Data Balancing. Bennin et al. [1] demonstrated that the
problem of data unbalancing, i.e. datasets having a number
of buggy classes much lower than non-buggy ones, can
bias the performance of bug prediction models. For this
reason, we applied the Synthetic Minority Over-sampling

TEchnique, i.e. SMOTE [7] to ensure a similar proportion
of buggy and non-buggy classes in the training sets.

It is worth noting that the order of the preprocessing steps
have been guided by the framework proposed by Song et al. [39],
who suggested an ideal sequence of operations to perform before
training a bug prediction model.

3.2 RQ1 - Evaluating ASCI in Cross-Project

Bug Prediction

To answer RQ1 we ran ASCI over the 10 preprocessed datasets
selected. As done in our previous work [13], the selected base learn-
ers used to con�gure ASCI were Naive Bayes, Logistic Regression,
Multi Layer Perceptron, J48, Radial Basis Function Network.

A key decision in this context was the selection of an appropriate
validation strategy [41]. We opted for the Leave-One-Out Cross-

Validation [37]. In this strategy, the model is trained using the
data of all the systems but one, which is retained as test set. The
cross-validation has been then repeated 10 times, allowing each
of the 10 systems to be the test set exactly once [37]. We used
this validation strategy since it is among the least biased and most
stable validation approaches, according to the �ndings reported by
Tantithamthavorn et al. [41].

For the evaluation of the performances obtained by ASCI, we em-
ployed widely-adopted metrics such as (i) accuracy, (ii) F-measure,
i.e. the harmonic mean of precision and recall, and (iii) the Area
Under the Curve (AUC), which quanti�es the overall ability of a
model to discriminate between buggy and non-buggy classes.

The performances achieved by our approach were �rstly com-
pared with those obtained by the model relying on the Naive Bayes
classi�er, which was found to be the best stand-alone machine
learner over our dataset. More speci�cally, we ran seven stand-
alone classi�ers, i.e. Multi-Layer Perceptron, Naive Bayes, Lo-
gistic Regression, Radial Basis Function, C4.5, Decision Table,
and Support Vector Machine on the same set of systems con-
sidered in the study and using the same validation methodology.
As a result, we found that the use of Naive Bayes led to the best
results in terms of F-Measure. For this reason, we considered such
a classi�er as our baseline. In the second place, we benchmarked

ASCI with the Validation and Voting (VV) ensemble classi�er
[43], which predicts the bug-proneness of a class based on the
majority of “votes” of the base classi�ers. Also in this case, the base
learners were Naive Bayes, Logistic Regression, Multi Layer
Perceptron, J48, and Radial Basis Function Network.

The choice of using Validation and Voting as baseline was
driven by the �ndings provided by Zhang et al. [47], which demon-
strated that the VV method is able to outperform other ensemble
classi�ers in the context of cross-project [47] bug prediction.

We are aware of the possible impact of classi�ers’ con�guration
on the ability of �nding bugs [42], however the identi�cation of
the ideal settings in the parameter space of a single classi�cation
technique would have been prohibitively expensive [2]. For this
reason, we applied the classi�ers using their default con�guration.

3.3 RQ2 - Combination of Local-Project

Strategy and Ensemble Techniques

In the context of this research question, we had to build local bug
prediction models. To this aim, we exploited the Expectation
Maximization (EM) clustering algorithm proposed by Dempster
et al. [11]. Its choice was driven by multiple factors. Firstly, it can
automatically determine the number of clusters through an internal
cross-validation process. Secondly, it is similar to the MCLUST
algorithm used by Bettenburg et al. [3] and Menzies et al. [25].
Lastly, previous work [22] showed that the performance achieved
by EM are close to those obtained by the algorithm originally
proposed by Menzies et al. [25]. We relied on the implementation
of the algorithm available in the Weka toolkit [17].

Given a project Pi , the input of the clustering algorithm was
represented by the data coming from all the systems but Pi , i.e. we
still worked in a cross-project setting by means of the Leave-One-

Out Cross-Validation [37] where the test sets was represented by
the data of Pi . Unlike traditional leave-one-out cross validation,
we created a bug prediction model for each of the clusters. During
the testing phase, for each class in Pi we used the model trained
on the cluster the class is closed to.

As done for RQ1 we we compared ASCI with Naive Bayes and
Validation and Voting using accuracy, F-Measure, and AUC to
evaluate the performances of our technique. To measure the extent
to which local learning has an e�ect on cross-project performances,
we also compared local models with global models de�ned in the
context of RQ1.

4 ANALYSIS OF THE RESULTS

In this section we present the results of our study, by discussing
each research question independently.

4.1 RQ1 - Evaluation of Ensemble Techniques

when Adopted for Cross-Project Bug

Prediction

Figure 2 depicts the box plots of the Accuracy, F-Measure and AUC-
ROC achieved on the 10 software systems in our dataset by the
experimented cross-project bug prediction models (white asterisks
highlight the means). In red we report the performances in the
global setting, while in green the ones of local learning.

4

Figure 2: Boxplots of the Accuracy, F-Measure, and AUC-ROC achieved by NB, VV, and ASCI.

First of all, we found that in some cases the models based on
Naive Bayes exhibit better performances than those based on the
ensemble classi�ers. Thus, we can claim that the models based on
ensemble classi�ers not always provide improvements with respect
to a well selected stand-alone model.

Indeed, as for ASCI, our results show how its performances
are better than Naive Bayes (e.g. median Accuracy +6%, median
F-Measure +4%, and median AUC-ROC +2%). At the same time, it
shows better performance with respect to Validation and Voting
in terms of Accuracy, F-Measure (e.g. median Accuracy -2%, median
F-Measure -8%, u median AUC-ROC). Thus, the application of our
technique in a cross-project setting is able to provide improvements
in the prediction of bugs with respect to the models based on the
well-known Naive Bayes and Validation and Voting ensemble
technique.

As a more general observation, it is important to note that the
performances of all the cross-project models experimented are quite
low—on average they do not exceed 40% in terms of F-Measure. On
the one hand, all the experimented models solely relied on code
metrics as independent variables. As widely shown in literature
DAmbros:emse,di2017developer,Moser:esem2008 a combination of
predictors of di�erent natures (e.g. process metrics) has an impor-
tant e�ect on the overall performances of bug prediction models.
On the other hand, our results still suggest that cross-project bug
prediction is still far from being actually usable in practice. For
this reason, the research community needs to investigate more the
problem, trying to identify useful tools to make cross-project bug
prediction actually e�ective.

Summary for RQ1. None of the cross-project models ex-
perimented is able to exceed 40% of F-Measure (on average),
meaning that the problem of identifying buggy classes us-
ing external sources of information is still far from being
solved. However, the models relying on ASCI are able to
provide bene�ts with respect to stand-alone classi�ers and
the Validation and Voting ensemble technique.

4.2 RQ2: Evaluation of Ensemble Techniques

when Adopted for Local Cross-Project Bug

Prediction

On the basis of the results achieved in RQ1, we veri�ed whether
the application of local learning—that was suggested as a promising
way to reduce data heterogeneity—could improve the performances

of ASCI. Figures 2 depicts the box plots reporting Accuracy, F-
Measure, and AUC-ROC achieved on the 10 subject systems when
combining local learning and the ensemble techniques considered
in our study, along with those achieved by the standard local bug
prediction model that relies on Naive Bayes. To ease the compari-
son with the results of RQ1, we also report box plots for the global
models built using the same set of classi�ers.

As a �rst observation, local models do not always achieve better

performances with respect to global models. In particular, in case of
Naive Bayes, we can notice a decrease of the performances of 4%
in terms of median F-Measure. It is worth noting that combining
local learning with Naive Bayes does not allow to achieve bet-
ter performances than those obtained using ensemble techniques
without local learning. Thus, we can con�rm that the ensemble
classi�ers perform better than stand-alone classi�ers.

Analyzing the di�erences between the global and local versions
of the ensemble methods experimented, we observe that researchers
should be careful when applying local bug prediction. Indeed, looking
at the median F-Measure, we can observe that the Validation and
Voting model is not able to take full advantage of the local learn-
ing, achieving a decrease of 5% of in terms of median F-Measure.
A likely motivation for such result comes from the characteris-
tics of the algorithm: as shown in previous research [35, 13], this
technique fails in case of high variability among the predictions
provided by di�erent classi�ers because the majority of the base
classi�ers might wrongly classify the bug-proneness of a class, thus
negatively in�uencing the performances of techniques which com-
bine the output of di�erent classi�ers. When applying Validation
and Voting locally, we observed that speci�c classi�ers act much
better on some speci�c clusters than other machine learners, mean-
ing that very few of them can correctly classify the bug-proneness
of code entities. As a consequence, the voting is often not useful,
leading to a decreasing of the overall performances of local bug
prediction for some systems. This result con�rm the �ndings of
Herbold et al. [22] that �nd that local models have a small in�uence
on the results of cross-project bug prediction models.

Looking at ASCI, we found that this classi�er is able to exploit
some of the advantages provided by the lower heterogeneity of
data provided by local models. Indeed, despite there is a decrease
in terms of median F-Measure of 5%, there is an increase of 2%
in terms of Accuracy and 4% in terms of AUC-ROC. It is worth
noting that the AUC-ROC measures gives an indication on the
robustness of bug prediction models [20] (i.e. how well the classi�er

5

separates the binary classes), while the F-Measure indicates the
accuracy with which the predictions are done. In other words, they
are complementary metrics that capture robustness and accuracy,
respectively. Thus we can a�rm that local learning is able to
improve the robustness of a technique for the adaptive selection of
classi�ers in the context of cross-project defect prediction.

Summary for RQ2. Researchers should be careful when
applying local learning. Indeed, in most cases local learning
is not able to improve the performances of bug prediction
models. Despite this, the combination of local learning and
ASCI is able to improve the models performances in terms
of robustness.

4.3 Threats to Validity

In this section we discuss the threats that might a�ect the validity
of the empirical study conducted in this paper.

Threats to construct validity. Threats in this category regard
the relationship between theory and observation. In our work, a
threat is represented by the dataset we relied on. The dataset come
from the Promise repository [26], which is widely considered reli-
able and, indeed, has been also used in several previous work in
the �eld of bug prediction [47, 34, 16, 24, 33]. Although we cannot
exclude possible imprecisions and/or incompleteness of the data
used in the study, we applied a formal data preprocessing recom-
mended by Shepperd et al. [38], which allowed us to reduce noise
and remove erroneous entries present in the considered datasets.
Moreover, it is important to note that to produce stable results we
just considered software systems having less than 50% of buggy
classes [40].

As for the experimented prediction models, we exploited the
implementation provided by the Weka framework [17], which is
widely considered as a reliable source.

We are aware of the importance of parameter tuning for bug
prediction models. To minimize this threat we used the default pa-
rameters for each classi�er used in our study, since �nding the best
con�guration for all of them would have been too expensive [2].
As future goal, we plan to further analyze the impact of parameters’
con�guration to our �ndings.

Threats to conclusion validity. They are related to the rela-
tion between treatment and outcome. To reduce the impact of the
adopted validation methodology, we relied on the Leave-One-Out

Cross-Validation methodology [37]. This choice was driven by re-
sults recently reported that showed that such validation technique
is among the ones that are more stable and reliable [41].

To ensure that the results would have not been biased by con-
founding e�ects due to data unbalance [7] or highly correlated
independent variables [14], we adopted formal procedures aimed
at (i) over-sampling the training sets [7] and (ii) removing non-
relevant independent variables through feature selection [18].

As for the evaluation of the performances of the experimented
models, we used a widely used set of metrics (i.e. accuracy, F-
measure, and AUC-ROC) to evaluate the performances of bug
prediction classi�ers [16, 34, 24, 5].

Threats to external validity. These are threats concerned
with the generalizability of the �ndings. We analyzed 10 di�erent
software projects coming from di�erent application domains and
having di�erent characteristics (i.e. developers, size, number of
components, etc.). We are aware that this is a small set of systems
(especially as training set) and that this could have bad in�uenced
the results achieved in terms of F-Measure. Of course, we cannot
claim the generalizability with respect to industrial environments,
however the replication of the study on industrial projects is part
of our future research agenda.

5 CONCLUSION

In this paper, we aimed at evaluating the usage of ASCI for global
and local cross-project bug prediction. Speci�cally, we compared
its performances with those achieved by the best stand-alone clas-
si�er, i.e. Naive Bayes, and the Validation and Voting ensemble
technique, which has been shown to be the most reliable in previ-
ous work [47]. The study was conducted on a set of 10 software
projects from the Promise dataset, where we mitigated possible
threats to validity applying some precautions with respect to the
quality of data used.

We found that our approach improves the performances of bug
prediction models when adopted in a global scenario: in this case,
ASCI tends to work better than the other considered models, thus
highlighting how a combination of stand-alone classi�ers generally
improve bug prediction performances. When turning our attention
on the local learning scenario, our results show that the use of this
technique is not able in most cases to improve the performances
achieved by the models. Despite this, the combination of ASCI
with local learning is able to produce better models in terms of
robustness (e.g. AUC-ROC), while there are con�icting results in
terms of accuracy.

The observations above represent the main starting point for our
future research agenda. We �rstly plan to replicate the study on a
larger set of systems, using a richer set of independent variables,
using a large number of ensemble classi�ers, and investigating the
impact of classi�ers con�guration on our �ndings. In the second
place, we aim at studying what are the characteristics that make
the use of ensemble techniques useful or not useful, so that we can
build recommenders able to automatically suggest to developers in
which contexts it is really worth to use ensemble methods.

REFERENCES

[1] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Mensah. Mahakil:
Diversity based oversampling approach to alleviate the class imbalance issue in
software defect prediction. IEEE Transactions on Software Engineering, PP(99):1–1,
2017.

[2] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, pages 281–305, 2012.

[3] N. Bettenburg, M. Nagappan, and A. E. Hassan. Think locally, act globally:
Improving defect and e�ort prediction models. In Mining Software Repositories

(MSR), 2012 9th IEEE Working Conference on, pages 60–69. IEEE, 2012.
[4] M. E. Bezerra, A. L. Oliveira, P. J. Adeodato, and S. R. Meira. Enhancing RBF-

DDA algorithm’s robustness: Neural networks applied to prediction of fault-prone

software modules, pages 119–128. Springer, 2008.
[5] D. Bowes, T. Hall, and J. Petrić. Software defect prediction: do di�erent classi�ers

�nd the same defects? Software Quality Journal, pages 1–28, 2017.
[6] A. E. Camargo Cruz and K. Ochimizu. Towards logistic regression models for

predicting fault-prone code across software projects. In Proceedings of the 2009

3rd International Symposium on Empirical Software Engineering and Measurement,
pages 460–463. IEEE Computer Society, 2009.

6

[7] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic
minority over-sampling technique. Journal of Arti�cial Intelligence Research,
16(1):321–357, 2002.

[8] S. Chidamber and C. Kemerer. A metrics suite for object oriented design. Software
Engineering, IEEE Transactions on, 20(6):476–493, Jun 1994.

[9] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating defect prediction approaches:
a benchmark and an extensive comparison. Empirical Software Engineering, 17(4-
5):531–577, 2012.

[10] D. J. Dean, H. Nguyen, and X. Gu. Ubl: Unsupervised behavior learning for
predicting performance anomalies in virtualized cloud systems. In Proceedings of

the 9th International Conference on Autonomic Computing, pages 191–200. ACM,
2012.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the royal statistical society. Series B
(methodological), pages 1–38, 1977.

[12] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and A. De Lucia. A
developer centered bug prediction model. IEEE Transactions on Software Engi-

neering, PP(99):1–1, 2017.
[13] D. Di Nucci, F. Palomba, R. Oliveto, and A. De Lucia. Dynamic selection of

classi�ers in bug prediction: An adaptive method. IEEE Transactions on Emerging

Topics in Computational Intelligence, 1(3):202–212, 2017.
[14] T. Dietterich. Over�tting and undercomputing in machine learning. ACM Com-

puting Surveys, 27(3):326–327, Sept. 1995.
[15] M. O. Elish. A comparative study of fault density prediction in aspect-oriented

systems using mlp, rbf, knn, rt, den�s and svr models. Arti�cial Intelligence
Review, 42(4):695–703, 2014.

[16] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact of classi�cation
techniques on the performance of defect prediction models. In Proceedings of the

International Conference on Software Engineering, pages 789–800. IEEE, 2015.
[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The

weka data mining software: An update. SIGKDD Explorations Newsletter., 11(1),
2009.

[18] M. A. Hall. Correlation-based feature selection for machine learning. Technical
report, 1998.

[19] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic literature re-
view on fault prediction performance in software engineering. IEEE Transactions

on Software Engineering, 38(6):1276–1304, 2012.
[20] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver

operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.
[21] S. Herbold, A. Trautsch, and J. Grabowski. A comparative study to benchmark

cross-project defect prediction approaches. IEEE Transactions on Software Engi-

neering, PP(99):1–1, 2017.
[22] S. Herbold, A. Trautsch, and J. Grabowski. Global vs. local models for cross-

project defect prediction. Empirical Software Engineering, 22(4):1866–1902, 2017.
[23] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with noise in defect prediction. In

Proceedings of International Conference on Software Engineering, pages 481–490.
IEEE, 2011.

[24] Y. Liu, T. M. Khoshgoftaar, and N. Seliya. Evolutionary optimization of soft-
ware quality modeling with multiple repositories. IEEE Transactions on Software

Engineering, 36(6):852–864, 2010.
[25] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull, B. Turhan, and

T. Zimmermann. Local versus global lessons for defect prediction and e�ort
estimation. IEEE Transactions on software engineering, 39(6):822–834, 2013.

[26] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan.
The promise repository of empirical software engineering data, June 2012.

[27] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. Defect pre-
diction from static code features: current results, limitations, new approaches.
Automated Software Engineering, 17(4):375–407, 2010.

[28] R. Moser, W. Pedrycz, and G. Succi. Analysis of the reliability of a subset of
change metrics for defect prediction. In Proceedings of the Second ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement,
pages 309–311. ACM, 2008.

[29] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In Proceedings of the 2013

International Conference on Software Engineering, pages 382–391. IEEE Press,
2013.

[30] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classi�ers: A compar-
ison of logistic regression and naive bayes. In Advances in neural information

processing systems, pages 841–848, 2002.
[31] T. T. Nguyen, T. N. Nguyen, and T. M. Phuong. Topic-based defect prediction (nier

track). In Proceedings of the 33rd International Conference on Software Engineering,
pages 932–935. ACM, 2011.

[32] R. M. O’brien. A caution regarding rules of thumb for variance in�ation factors.
Quality & Quantity, 41(5):673–690, 2007.

[33] F. Palomba, M. Zanoni, F. A. Fontana, A. De Lucia, and R. Oliveto. Toward a
smell-aware bug prediction model. IEEE Transactions on Software Engineering,
2017.

[34] A. Panichella, R. Oliveto, and A. De Lucia. Cross-project defect prediction models:
L’union fait la force. In Proceedings of the IEEE Conference on Software Mainte-

nance, Reengineering and Reverse Engineering, pages 164–173. IEEE, 2014.
[35] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo. Building an ensemble

for software defect prediction based on diversity selection. In Proceedings of the

10th ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, page 46. ACM, 2016.
[36] L. Rokach. Ensemble-based classi�ers. Arti�cial Intelligence Review, 33(1):1–39,

2010.
[37] C. Sammut, editor. Leave-One-Out Cross-Validation, pages 600–601. Springer US,

Boston, MA, 2010.
[38] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data quality: Some comments on

the nasa software defect datasets. Software Engineering, IEEE Transactions on,
39(9):1208–1215, Sept 2013.

[39] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. A general software defect-
proneness prediction framework. IEEE Transactions on Software Engineering,
37(3):356–370, 2011.

[40] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. Automated
parameter optimization of classi�cation techniques for defect prediction models.
In Proceedings of the 38th International Conference on Software Engineering, pages
321–332, 2016.

[41] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. An empirical
comparison of model validation techniques for defect prediction models. IEEE
Transanctions on Software Engineering, 43(1):1–18, 2017.

[42] S. W. Thomas, M. Nagappan, D. Blostein, and A. E. Hassan. The impact of classi�er
con�guration and classi�er combination on bug localization. IEEE Transactions

on Software Engineering, 39(10):1427–1443, 2013.
[43] A. Tosun, B. Turhan, and A. Bener. Ensemble of software defect predictors: a

case study. In Proceedings of the Second ACM-IEEE international symposium on

Empirical software engineering and measurement, pages 318–320. ACM, 2008.
[44] B. Turhan, B. A. B. Menzies, Tim, and J. S. Di Stefano. On the relative value

of cross-company and within-company data for defect prediction. Empirical

Software Engineering, 14(5):540–578, 2009.
[45] T. Wang, W. Li, H. Shi, and Z. Liu. Software defect prediction based on classi�ers

ensemble. Journal of Information & Computational Science, 8(16):4241–4254, 2011.
[46] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan. Cross-project defect prediction

using a connectivity-based unsupervised classi�er. In Proceedings of the 38th

International Conference on Software Engineering, pages 309–320. ACM, 2016.
[47] Y. Zhang, D. Lo, X. Xia, and J. Sun. An empirical study of classi�er combination

for cross-project defect prediction. In Proceedings of the IEEE Annual Computer

Software and Applications Conference, volume 2, pages 264–269. IEEE, 2015.
[48] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project

defect prediction: a large scale experiment on data vs. domain vs. process. In
Proceedings of the the 7th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, pages 91–100. ACM, 2009.

7

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Related Literature
	2.2 Adaptive Selection of Classifiers

	3 Empirical Study Design
	3.1 Context Selection and Data Preprocessing
	3.2 RQ1 - Evaluating ASCI in Cross-Project Bug Prediction
	3.3 RQ2 - Combination of Local-Project Strategy and Ensemble Techniques

	4 Analysis of the Results
	4.1 RQ1 - Evaluation of Ensemble Techniques when Adopted for Cross-Project Bug Prediction
	4.2 RQ2: Evaluation of Ensemble Techniques when Adopted for Local Cross-Project Bug Prediction
	4.3 Threats to Validity

	5 Conclusion
	References

